Publikace UTB
Repozitář publikační činnosti UTB

Mobile accelerometer applications in core muscle rehabilitation and pre-operative assessment

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Mobile accelerometer applications in core muscle rehabilitation and pre-operative assessment en
dc.contributor.author Procházka, Aleš
dc.contributor.author Martynek, Daniel
dc.contributor.author Vitujová, Marie
dc.contributor.author Janáková, Daniela
dc.contributor.author Charvátová, Hana
dc.contributor.author Vyšata, Oldrich
dc.relation.ispartof Sensors
dc.identifier.issn 1424-8220 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 24
utb.relation.issue 22
dc.type article
dc.language.iso en
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI)
dc.identifier.doi 10.3390/s24227330
dc.relation.uri https://www.mdpi.com/1424-8220/24/22/7330
dc.subject physical activity monitoring en
dc.subject motion symmetry en
dc.subject rehabilitation en
dc.subject abdominal wall repair en
dc.subject computational intelligence en
dc.subject accelerometers en
dc.subject machine learning en
dc.description.abstract Individual physiotherapy is crucial in treating patients with various pain and health issues, and significantly impacts abdominal surgical outcomes and further medical problems. Recent technological and artificial intelligent advancements have equipped healthcare professionals with innovative tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to monitor and analyze patients’ physical activity. This paper investigates the potential applications of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive computational methodology is introduced, incorporating traditional digital signal processing, feature extraction in both time and transform domains, and advanced classification techniques. The study employs a range of machine learning methods, including support vector machines, Bayesian analysis, and neural networks, to evaluate the balance of various physical activities. The proposed approach achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion patterns by employing features from both the time and frequency domains using a two-layer neural network. These findings demonstrate promising applications of precise monitoring of rehabilitation exercises to increase the probability of successful surgical recovery, highlighting the potential to significantly enhance patient care and treatment outcomes. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012277
utb.identifier.scopus 2-s2.0-85210558400
utb.identifier.wok 001366142400001
utb.identifier.pubmed 39599107
utb.source j-scopus
dc.date.accessioned 2025-01-30T10:36:19Z
dc.date.available 2025-01-30T10:36:19Z
dc.description.sponsorship European Commission, EC; Robotics and Advanced Industrial Production, (CZ.02.01.01/00/22_008/0004590); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (SENDISO—CZ.02.01.01/00/22_008/0004596); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.description.sponsorship European Union; Operational Programme Johannes Amos Comenius; European Structural and Investment Funds; Czech Ministry of Education, Youth and Sports [CZ.02.01.01/00/22_008/0004596]; [CZ.02.01.01/00/22_008/0004590]
dc.rights Attribution 4.0 International
dc.rights.uri http://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou CEBIA-Tech
utb.contributor.internalauthor Charvátová, Hana
utb.fulltext.sponsorship This investigation was reinforced by the European Union under the project ROBOPROX—Robotics and Advanced Industrial Production (reg.no. CZ.02.01.01/00/22_008/0004590) in the area of machine learning. The research related to data acquisition and their computational processing was supported by Operational Programme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SENDISO—CZ.02.01.01/00/22_008/0004596).
utb.wos.affiliation [Prochazka, Ales; Martynek, Daniel] Univ Chem & Technol Prague, Dept Math Informat & Cybernet, Prague 6, Czech Republic; [Prochazka, Ales; Martynek, Daniel] Czech Tech Univ, Czech Inst Informat Robot & Cybernet, Prague 6, Czech Republic; [Vitujova, Marie; Janakova, Daniela] Charles Univ Prague, Fac Med & FN Motol 2, Dept Sports Med, Dept Urol, Prague 5, Czech Republic; [Charvatova, Hana] Tomas Bata Univ Zlin, Fac Appl Informat, Ctr Secur Informat & Adv Technol CEBIA Tech, Zlin 76001, Czech Republic; [Vysata, Oldrich] Charles Univ Prague, Fac Med Hradec Kralove, Dept Neurol, Hradec Kralove 50005, Czech Republic
utb.scopus.affiliation Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology in Prague, 166 28 Prague 6, Czech Republic; Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague 6, 160 00, Czech Republic; Department of Sports Medicine, 2nd Faculty of Medicine and FN Motol, Charles University in Prague, Prague 5, 150 00, Czech Republic; Centre for Security, Information and Advanced Technologies (CEBIA-Tech), Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, 760 01, Czech Republic; Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, 500 05, Czech Republic
utb.fulltext.projects CZ.02.01.01/00/22_008/0004590
utb.fulltext.projects CZ.02.01.01/00/22_008/0004596
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International