Publikace UTB
Repozitář publikační činnosti UTB

Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset en
dc.contributor.author Bajusová, Darina
dc.contributor.author Šilhavý, Radek
dc.contributor.author Šilhavý, Petr
dc.relation.ispartof Lecture Notes in Networks and Systems
dc.identifier.issn 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-303170299-0
dc.date.issued 2024
utb.relation.volume 1119 LNNS
dc.citation.spage 416
dc.citation.epage 428
dc.event.title 13th Computer Science Online Conference, CSOC 2024
dc.event.location online
dc.event.sdate 2024-04-25
dc.event.edate 2024-04-28
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-70300-3_30
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-70300-3_30
dc.subject COCOMO model en
dc.subject MSE en
dc.subject optimization en
dc.subject Self-Organizing Migrating Algorithm en
dc.subject software effort estimation en
dc.description.abstract Software effort estimation plays a pivotal role in software development. The Constructive Cost Model (COCOMO) is one of the most well-known algorithmic models for estimating software effort. However, the precision of these estimates is susceptible to input constants, potentially resulting in inaccuracies. To address this challenge, this research employs the Self-Organizing Migration Algorithm (SOMA), a metaheuristic algorithm, to optimize input constants of the basic COCOMO. This study uses the NASA18 dataset to evaluate the proposed experiment’s performance against the original COCOMO. Evaluation criteria such as MMRE, PRED(0.25), MAE, and MSE, with MSE serving as a fitness function, were employed to validate results. Comparative analysis indicates that optimized COCOMO estimates exhibit improved prediction accuracy. Building on these promising findings, future research will extend testing more deeply with other datasets and involve investigation of the intermediate COCOMO and COCOMO II. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012252
utb.identifier.scopus 2-s2.0-85208069574
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:17Z
dc.date.available 2025-01-30T10:36:17Z
dc.description.sponsorship Tomas Bata University in Zlin, Faculty of Applied Informatics, (IGA/CebiaTech/2023/004)
utb.contributor.internalauthor Bajusová, Darina
utb.contributor.internalauthor Šilhavý, Radek
utb.contributor.internalauthor Šilhavý, Petr
utb.fulltext.sponsorship This work was supported by Tomas Bata University in Zlin, Faculty of Applied Informatics, under project IGA/CebiaTech/2023/004.
utb.scopus.affiliation Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam