Kontaktujte nás | Jazyk: čeština English
dc.title | Evaluating mean squared error as a fitness function in SOMA for software effort estimation: Insights from the NASA dataset | en |
dc.contributor.author | Bajusová, Darina | |
dc.contributor.author | Šilhavý, Radek | |
dc.contributor.author | Šilhavý, Petr | |
dc.relation.ispartof | Lecture Notes in Networks and Systems | |
dc.identifier.issn | 2367-3370 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-303170299-0 | |
dc.date.issued | 2024 | |
utb.relation.volume | 1119 LNNS | |
dc.citation.spage | 416 | |
dc.citation.epage | 428 | |
dc.event.title | 13th Computer Science Online Conference, CSOC 2024 | |
dc.event.location | online | |
dc.event.sdate | 2024-04-25 | |
dc.event.edate | 2024-04-28 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-70300-3_30 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-70300-3_30 | |
dc.subject | COCOMO model | en |
dc.subject | MSE | en |
dc.subject | optimization | en |
dc.subject | Self-Organizing Migrating Algorithm | en |
dc.subject | software effort estimation | en |
dc.description.abstract | Software effort estimation plays a pivotal role in software development. The Constructive Cost Model (COCOMO) is one of the most well-known algorithmic models for estimating software effort. However, the precision of these estimates is susceptible to input constants, potentially resulting in inaccuracies. To address this challenge, this research employs the Self-Organizing Migration Algorithm (SOMA), a metaheuristic algorithm, to optimize input constants of the basic COCOMO. This study uses the NASA18 dataset to evaluate the proposed experiment’s performance against the original COCOMO. Evaluation criteria such as MMRE, PRED(0.25), MAE, and MSE, with MSE serving as a fitness function, were employed to validate results. Comparative analysis indicates that optimized COCOMO estimates exhibit improved prediction accuracy. Building on these promising findings, future research will extend testing more deeply with other datasets and involve investigation of the intermediate COCOMO and COCOMO II. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012252 | |
utb.identifier.scopus | 2-s2.0-85208069574 | |
utb.source | d-scopus | |
dc.date.accessioned | 2025-01-30T10:36:17Z | |
dc.date.available | 2025-01-30T10:36:17Z | |
dc.description.sponsorship | Tomas Bata University in Zlin, Faculty of Applied Informatics, (IGA/CebiaTech/2023/004) | |
utb.contributor.internalauthor | Bajusová, Darina | |
utb.contributor.internalauthor | Šilhavý, Radek | |
utb.contributor.internalauthor | Šilhavý, Petr | |
utb.fulltext.sponsorship | This work was supported by Tomas Bata University in Zlin, Faculty of Applied Informatics, under project IGA/CebiaTech/2023/004. | |
utb.scopus.affiliation | Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |