Publikace UTB
Repozitář publikační činnosti UTB

Classification with pseudo neural networks based on evolutionary symbolic regression

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Classification with pseudo neural networks based on evolutionary symbolic regression en
dc.contributor.author Oplatková, Zuzana
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Proceedings - 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2011
dc.identifier.isbn 978-076954531-8
dc.date.issued 2011
utb.relation.issue Proceedings - 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2011
dc.citation.spage 396
dc.citation.epage 401
dc.event.title 6th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC-2011
dc.event.location Barcelona
utb.event.state-en Spain
utb.event.state-cs Španělsko
dc.event.sdate 2011-10-26
dc.event.edate 2011-10-28
dc.type conferenceObject
dc.language.iso en
dc.publisher IEEE Computer Society
dc.identifier.doi 10.1109/3PGCIC.2011.74
dc.subject analytic programming en
dc.subject classification en
dc.subject evolutionary computation en
dc.subject pseudo neural networks en
dc.description.abstract This research deals with a novel approach to classification. Classical artificial neural networks, where a relation between inputs and outputs is based on the mathematical transfer functions and optimized numerical weights, was an inspiration for this work. Artificial neural networks need to optimize weights, but the structure and transfer functions are usually set up before the training. There exist some evolutionary approaches, which help to set up the structure or to optimize weights in different ways than standard artificial neural networks do. The proposed method utilizes the symbolic regression for synthesis of a whole structure, i.e. the relation between inputs and output(s). For experimentation, Differential Evolution (DE) and Self Organizing Migrating Algorithm (SOMA) for the main procedure of analytic programming (AP) and DE as an algorithm for meta-evolution were used. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012248
utb.identifier.obdid 43866936
utb.identifier.scopus 2-s2.0-84880207025
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:17Z
dc.date.available 2025-01-30T10:36:17Z
dc.description.sponsorship Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT, (GACR 102/09/1680); Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; European Regional Development Fund, ERDF, (CZ.1.05/2.1.00/03.0089); European Regional Development Fund, ERDF
utb.contributor.internalauthor Oplatková, Zuzana
utb.contributor.internalauthor Šenkeřík, Roman
utb.scopus.affiliation Tomas Bata University in Zlin, Faculty of Applied Informatics, Nam. T.G.Masaryka 5555, Zlin, 760 01, Czech Republic
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam