Publikace UTB
Repozitář publikační činnosti UTB

Using LLM for automatic evolvement of metaheuristics from swarm algorithm SOMA

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Using LLM for automatic evolvement of metaheuristics from swarm algorithm SOMA en
dc.contributor.author Pluháček, Michal
dc.contributor.author Kováč, Jozef
dc.contributor.author Viktorin, Adam
dc.contributor.author Janků, Peter
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion
dc.identifier.isbn 979-840070495-6
dc.date.issued 2024
dc.citation.spage 2018
dc.citation.epage 2022
dc.event.title 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
dc.event.location Australia
utb.event.state-en Melbourne
utb.event.state-cs Austrálie
dc.event.sdate 2024-07-14
dc.event.edate 2024-07-18
dc.type conferenceObject
dc.language.iso en
dc.publisher Association for Computing Machinery, Inc
dc.identifier.doi 10.1145/3638530.3664181
dc.relation.uri https://dl.acm.org/doi/10.1145/3638530.3664181
dc.relation.uri https://dl.acm.org/doi/pdf/10.1145/3638530.3664181
dc.subject automatic algorithm design en
dc.subject evolutionary computation en
dc.subject GPT en
dc.subject large language models en
dc.subject metaheuristic optimization en
dc.subject self-organizing migrating algorithm en
dc.description.abstract This study investigates the use of the GPT-4 Turbo, a large language model, to enhance the Self-Organizing Migrating Algorithm (SOMA), specifically its All to All variant (SOMA-ATA). Utilizing the model's extensive context capacity for iterative prompting without feedback, we sought to autonomously generate superior algorithmic versions. Contrary to our initial hypothesis, the improvements did not progress linearly. Nevertheless, one iteration stood out significantly, consistently outperforming the baseline across various pairwise comparisons and showing a robust performance profile. This iteration's structure deviated substantially from traditional SOMA principles, underscoring the potential of large language models to create distinctive and effective algorithmic strategies. The results affirm the methodology's ability to produce high-performing algorithms without expert intervention, setting the stage for future research to integrate feedback mechanisms and conduct detailed code analyses to understand further the modifications made by the Large Language Models. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012244
utb.identifier.scopus 2-s2.0-85201933497
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:16Z
dc.date.available 2025-01-30T10:36:16Z
dc.description.sponsorship Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Tomas Bata University in Zlín, TBU; Grantová Agentura České Republiky, GAČR, (GF21-45465L); Grantová Agentura České Republiky, GAČR; Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285); Narodowe Centrum Nauki, NCN
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kováč, Jozef
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Janků, Peter
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.sponsorship This research was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science assigned to AGH University of Science and Technology. During the preparation of this work, the authors used OpenAI ChatGPT 4.0 to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the publication’s content.
utb.scopus.affiliation Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
utb.fulltext.projects GF21-45465L
utb.fulltext.projects 2020/39/I/ST7/02285
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam