Kontaktujte nás | Jazyk: čeština English
dc.title | Using LLM for automatic evolvement of metaheuristics from swarm algorithm SOMA | en |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Kováč, Jozef | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Janků, Peter | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion | |
dc.identifier.isbn | 979-840070495-6 | |
dc.date.issued | 2024 | |
dc.citation.spage | 2018 | |
dc.citation.epage | 2022 | |
dc.event.title | 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion | |
dc.event.location | Australia | |
utb.event.state-en | Melbourne | |
utb.event.state-cs | Austrálie | |
dc.event.sdate | 2024-07-14 | |
dc.event.edate | 2024-07-18 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery, Inc | |
dc.identifier.doi | 10.1145/3638530.3664181 | |
dc.relation.uri | https://dl.acm.org/doi/10.1145/3638530.3664181 | |
dc.relation.uri | https://dl.acm.org/doi/pdf/10.1145/3638530.3664181 | |
dc.subject | automatic algorithm design | en |
dc.subject | evolutionary computation | en |
dc.subject | GPT | en |
dc.subject | large language models | en |
dc.subject | metaheuristic optimization | en |
dc.subject | self-organizing migrating algorithm | en |
dc.description.abstract | This study investigates the use of the GPT-4 Turbo, a large language model, to enhance the Self-Organizing Migrating Algorithm (SOMA), specifically its All to All variant (SOMA-ATA). Utilizing the model's extensive context capacity for iterative prompting without feedback, we sought to autonomously generate superior algorithmic versions. Contrary to our initial hypothesis, the improvements did not progress linearly. Nevertheless, one iteration stood out significantly, consistently outperforming the baseline across various pairwise comparisons and showing a robust performance profile. This iteration's structure deviated substantially from traditional SOMA principles, underscoring the potential of large language models to create distinctive and effective algorithmic strategies. The results affirm the methodology's ability to produce high-performing algorithms without expert intervention, setting the stage for future research to integrate feedback mechanisms and conduct detailed code analyses to understand further the modifications made by the Large Language Models. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012244 | |
utb.identifier.scopus | 2-s2.0-85201933497 | |
utb.source | d-scopus | |
dc.date.accessioned | 2025-01-30T10:36:16Z | |
dc.date.available | 2025-01-30T10:36:16Z | |
dc.description.sponsorship | Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Tomas Bata University in Zlín, TBU; Grantová Agentura České Republiky, GAČR, (GF21-45465L); Grantová Agentura České Republiky, GAČR; Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285); Narodowe Centrum Nauki, NCN | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Kováč, Jozef | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Janků, Peter | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.sponsorship | This research was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science assigned to AGH University of Science and Technology. During the preparation of this work, the authors used OpenAI ChatGPT 4.0 to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the publication’s content. | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 | |
utb.fulltext.projects | GF21-45465L | |
utb.fulltext.projects | 2020/39/I/ST7/02285 |