Publikace UTB
Repozitář publikační činnosti UTB

Measuring population diversity in variable dimension search spaces

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Measuring population diversity in variable dimension search spaces en
dc.contributor.author Pluháček, Michal
dc.contributor.author Viktorin, Adam
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Kováč, Jozef
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion
dc.identifier.isbn 979-840070495-6
dc.date.issued 2024
dc.citation.spage 1511
dc.citation.epage 1519
dc.event.title 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
dc.event.location Melbourne
utb.event.state-en Australia
utb.event.state-cs Austrálie
dc.event.sdate 2024-07-14
dc.event.edate 2024-07-18
dc.type conferenceObject
dc.language.iso en
dc.publisher Association for Computing Machinery, Inc
dc.identifier.doi 10.1145/3638530.3664170
dc.relation.uri https://dl.acm.org/doi/10.1145/3638530.3664170
dc.relation.uri https://dl.acm.org/doi/pdf/10.1145/3638530.3664170
dc.subject diversity en
dc.subject evolutionary computation en
dc.subject variable dimension en
dc.description.abstract Measuring diversity in evolutionary algorithms presents a complex challenge, especially in optimization tasks with variable dimensionality. Current literature offers limited insights on effectively quantifying diversity under these conditions. This paper addresses this gap by evaluating the effectiveness of conventional diversity measures in variable dimension contexts and identifying their limitations. We introduce a novel diversity measurement approach tailored to these dynamic environments. Our method comprehensively captures both the structural and parametric diversity of populations, providing a more nuanced understanding of diversity changes over time. Through a series of experimental scenarios, we demonstrate that our proposed measure effectively tracks the evolution of diversity in populations with variable dimensions. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012242
utb.identifier.scopus 2-s2.0-85201968740
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:16Z
dc.date.available 2025-01-30T10:36:16Z
dc.description.sponsorship Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Grantová Agentura České Republiky, GAČR, (GF21-45465L); Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285)
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Kováč, Jozef
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.sponsorship The research was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science funds assigned to AGH University of Science and Technology. During the preparation of this work, the authors used OpenAI ChatGPT 4.0 to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the publication’s content.
utb.scopus.affiliation Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
utb.fulltext.projects GF21-45465L
utb.fulltext.projects 2020/39/I/ST7/02285
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam