Kontaktujte nás | Jazyk: čeština English
dc.title | Measuring population diversity in variable dimension search spaces | en |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Kováč, Jozef | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion | |
dc.identifier.isbn | 979-840070495-6 | |
dc.date.issued | 2024 | |
dc.citation.spage | 1511 | |
dc.citation.epage | 1519 | |
dc.event.title | 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion | |
dc.event.location | Melbourne | |
utb.event.state-en | Australia | |
utb.event.state-cs | Austrálie | |
dc.event.sdate | 2024-07-14 | |
dc.event.edate | 2024-07-18 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery, Inc | |
dc.identifier.doi | 10.1145/3638530.3664170 | |
dc.relation.uri | https://dl.acm.org/doi/10.1145/3638530.3664170 | |
dc.relation.uri | https://dl.acm.org/doi/pdf/10.1145/3638530.3664170 | |
dc.subject | diversity | en |
dc.subject | evolutionary computation | en |
dc.subject | variable dimension | en |
dc.description.abstract | Measuring diversity in evolutionary algorithms presents a complex challenge, especially in optimization tasks with variable dimensionality. Current literature offers limited insights on effectively quantifying diversity under these conditions. This paper addresses this gap by evaluating the effectiveness of conventional diversity measures in variable dimension contexts and identifying their limitations. We introduce a novel diversity measurement approach tailored to these dynamic environments. Our method comprehensively captures both the structural and parametric diversity of populations, providing a more nuanced understanding of diversity changes over time. Through a series of experimental scenarios, we demonstrate that our proposed measure effectively tracks the evolution of diversity in populations with variable dimensions. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012242 | |
utb.identifier.scopus | 2-s2.0-85201968740 | |
utb.source | d-scopus | |
dc.date.accessioned | 2025-01-30T10:36:16Z | |
dc.date.available | 2025-01-30T10:36:16Z | |
dc.description.sponsorship | Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Grantová Agentura České Republiky, GAČR, (GF21-45465L); Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285) | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Kováč, Jozef | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.sponsorship | The research was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science funds assigned to AGH University of Science and Technology. During the preparation of this work, the authors used OpenAI ChatGPT 4.0 to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the publication’s content. | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 | |
utb.fulltext.projects | GF21-45465L | |
utb.fulltext.projects | 2020/39/I/ST7/02285 |