Publikace UTB
Repozitář publikační činnosti UTB

DISH solving the GNBG-generated test suite

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title DISH solving the GNBG-generated test suite en
dc.contributor.author Viktorin, Adam
dc.contributor.author Pluháček, Michal
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Kováč, Jozef
dc.contributor.author Janků, Peter
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof GECCO 2024 Companion - Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion
dc.identifier.isbn 979-840070495-6
dc.date.issued 2024
dc.citation.spage 19
dc.citation.epage 20
dc.event.title 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
dc.event.location Melbourne
utb.event.state-en Australia
utb.event.state-cs Austrálie
dc.event.sdate 2024-07-14
dc.event.edate 2024-07-18
dc.type conferenceObject
dc.language.iso en
dc.publisher Association for Computing Machinery, Inc
dc.identifier.doi 10.1145/3638530.3664052
dc.relation.uri https://dl.acm.org/doi/10.1145/3638530.3664052
dc.relation.uri https://dl.acm.org/doi/pdf/10.1145/3638530.3664052
dc.subject benchmarking en
dc.subject evolutionary computation en
dc.description.abstract This paper presents an extended abstract describing an entry into the benchmarking competition on a new GNBG-generated Test Suite. We are presenting the results of our previously published Distance based parameter adaptation for Success-History based Differential Evolution (DISH) algorithm based on state of the art adaptive differential evolution variants. The key feature of our algorithm is a prolonged exploration due to an updated weighting scheme for control parameter adaptation. The results show that our contestant is able to locate the global optima on 12 out of the 24 test functions. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012241
utb.identifier.scopus 2-s2.0-85201963434
utb.source d-scopus
dc.date.accessioned 2025-01-30T10:36:16Z
dc.date.available 2025-01-30T10:36:16Z
dc.description.sponsorship Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Grantová Agentura České Republiky, GAČR, (GF21- 45465L); Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285)
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Kováč, Jozef
utb.contributor.internalauthor Janků, Peter
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.sponsorship The research presented in this paper was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science funds assigned to AGH University of Science and Technology. During the preparation of this work, the authors used OpenAI ChatGPT 4.0 to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and took full responsibility for the publication’s content.
utb.scopus.affiliation Tomas Bata University in Zlín, Zlín, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
utb.fulltext.projects GF21-45465L
utb.fulltext.projects 2020/39/I/ST7/02285
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam