Publikace UTB
Repozitář publikační činnosti UTB

Composite materials for supercapacitor electrodes utilizing polypyrrole nanotubes, reduced graphene oxides and metal-organic framework

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Composite materials for supercapacitor electrodes utilizing polypyrrole nanotubes, reduced graphene oxides and metal-organic framework en
dc.contributor.author Kiefer, Rudolf
dc.contributor.author Sapurina, Irina
dc.contributor.author Bubulinca, Constantin
dc.contributor.author Münster, Lukáš
dc.contributor.author Delawary, Ahmad Reshad
dc.contributor.author Bugarova, Nikola
dc.contributor.author Mičušík, Matej
dc.contributor.author Omastova, Maria
dc.contributor.author Kazantseva, Natalia E.
dc.contributor.author Sáha, Petr
dc.contributor.author Le, Quoc Bao
dc.relation.ispartof Current Science
dc.identifier.issn 0011-3891 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 127
utb.relation.issue 5
dc.citation.spage 537
dc.citation.epage 543
dc.type article
dc.language.iso en
dc.publisher Indian Acad Sciences
dc.identifier.doi 10.18520/cs/v127/i5/537-543
dc.relation.uri https://www.currentscience.ac.in/show.issue.php?volume=127&issue=5
dc.relation.uri https://www.currentscience.ac.in/Volumes/127/05/0537.pdf
dc.subject electrochemical devices en
dc.subject metal-organic framework en
dc.subject polypyrrole nanotubes en
dc.subject reduced graphene oxide en
dc.subject supercapacitor electrodes en
dc.description.abstract Polypyrrole (PPy) is favoured in energy storage for its high pseudo-capacitive performance, notably as polypyrrole nanotubes (PPyNTs) due to their easy synthesis, cost-effectiveness and electrochemical solid properties. Metal–organic frameworks (MOFs) have also gained attention for enhancing supercapacitors (SCs). In this study, we fabricated aerogel composites with PPyNTs, MOFs and reduced graphene oxide (rGO) as SC electrode materials. Varying concentrations of PPyNTs and rGO were explored, with MOFs added to assess their impact. Electrochemical tests revealed that the composite with PPyNTs and Zn-MOF achieved the highest specific capacitance of approximately 270 F/g at 0.5 A/g. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012182
utb.identifier.obdid 43885783
utb.identifier.scopus 2-s2.0-85203641403
utb.identifier.wok 001317708900006
utb.identifier.coden CUSCA
utb.source J-wok
dc.date.accessioned 2025-01-15T08:08:12Z
dc.date.available 2025-01-15T08:08:12Z
dc.description.sponsorship Hori-zon Europe project TwinVECTOR of the European Union [101078935]; Horizon Europe - Horizontal Pillar [101078935] Funding Source: Horizon Europe - Horizontal Pillar
dc.description.sponsorship HORIZON EUROPE Framework Programme; European Commission, EC, (101078935); European Commission, EC
dc.description.sponsorship HORIZON EUROPE Framework Programme; European Commission, EC, (101078935); European Commission, EC
dc.rights.access openAccess
utb.contributor.internalauthor Sapurina, Irina
utb.contributor.internalauthor Bubulinca, Constantin
utb.contributor.internalauthor Münster, Lukáš
utb.contributor.internalauthor Delawary, Ahmad Reshad
utb.contributor.internalauthor Kazantseva, Natalia E.
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Rudolf Kiefer1, Irina Sapurina2, Constantin Bubulinca2, Lukas Munster2, Ahmad Reshad Delawary2, Nikola Bugarova3, Matej Mičušík3, Maria Omastova3, Natalia E. Kazantseva2, Petr Saha2 and Quoc Bao Le1,* 1 Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam 2 2 University Institute, Tomas Bata University in Zlin, Nad Ovčírnou 3685, 760 01, Zlin, Czech Republic 3 Polymer Institute, Slovak Academy of Science, Dubravska Cesta, 9, 845 41 Bratislava, Slovakia *For correspondence. (e-mail: lequocbao@tdtu.edu.vn)
utb.fulltext.dates Received 18 February 2024 revised accepted 8 May 2024
utb.fulltext.references 1. González, A., Goikolea, E., Barrena, J. A. and Mysyk, R., Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev., 2016, 58, 1189–1206. 2. Quoc Bao, L. et al., Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochim. Acta, 2021, 367, 137563. 3. Patil, S. H., Gaikwad, A. P., Sathaye, S. D. and Patil, K. R., To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochim. Acta, 2018, 265, 556–568. 4. Tran, V. C., Sahoo, S., Hwang, J., Nguyen, V. Q. and Shim, J.-J., Poly(aniline‑co‑pyrrole)-spaced graphene aerogel for advanced supercapacitor electrodes. J. Electroanal. Chem., 2018, 810, 154–160. 5. Niu, Z. et al., A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater., 2014, 26, 3681–3687. 6. Le, Q. B. et al., Effect of PANI and PPy on electrochemical performance of rGO/ZnMn2O4 aerogels as electrodes for supercapacitors. J. Electron. Mater., 2020, 49, 4697–4706. 7. Kopecká, J. et al., Polypyrrole nanotubes: mechanism of formation. RSC Adv., 2014, 4, 1551–1558. 8. Cherusseri, J., Pandey, D., Sambath Kumar, K., Thomas, J. and Zhai, L., Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale, 2020, 12, 17649–17662. 9. Baumann, A. E., Burns, D. A., Liu, B. and Thoi, V. S., Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem., 2019, 2, 1–14. 10. Pachfule, P., Shinde, D., Majumder, M. and Xu, Q., Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chem., 2016, 8, 718–724. 11. Le, Q. B. et al., Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal–organic frameworks, and PANI. Sci. Rep., 2022, 12, 1–13. 12. Le, Q. B., Fei, H., Bubulinca, C., Ngwabebhoh, F. A., Kazantseva, N. E. and Saha, P., Reduced graphene oxide composited with NiMOF and PANI applied as electrodes for supercapacitor. ECS Trans., 2020, 99, 93–101. 13. Chougule, M. A., Pawar, S. G., Godse, P. R., Mulik, R. N., Sen, S. and Patil, V. B., Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett., 2011, 1, 6–10. 14. Alazmi, A., El Tall, O., Rasul, S., Hedhili, M. N., Patole, S. P. and Costa, P. M. F. J., A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale, 2016, 8, 17782–17787. 15. Arjun, N., Uma, K., Pan, G.-T., Yang, T. C. K. and Sharmila, G., One-pot synthesis of covalently functionalized reduced graphene oxide–polyaniline nanocomposite for supercapacitor applications. Clean Technol. Environ. Policy, 2018, 20, 2025–2035. 16. Shao, Q. et al., Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J. Power Sources, 2015, 278, 751–759. 17. Alcaraz-Espinoza, J. J., De Melo, C. P., and De Oliveira, H. P., Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega, 2017, 2, 2866–2877. 18. Wang, J., Xu, Y., Wang, J., Du, X., Xiao, F. and Li, J., High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synth. Met., 2010, 160, 1826–1831. 19. Gilshteyn, E. P. et al., Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology, 2018, 29(32), 325501; doi:10.1088/1361-6528/aac658. 20. Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O. and Bélanger, D., Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc., 2006, 153, A2171. 21. Le, Q. B., Kiefer, R., Vo, P. N. X., Kazantseva, N. E. and Saha, P., Conducting polymers for pseudocapacitors. In Pseudocapacitors Engineering Materials (ed. Gupta, R. K.), Springer, Cham, 2024, pp. 157–175; https://doi.org/10.1007/978-3-031-45430-1_9. 22. Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C. J., Shao-Horn, Y. and Dincǎ, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Mater., 2017, 16, 220–224. 23. Khuyen, N. Q., Kiefer, R. and Le, Q. B., rGO/Ni-MOF composite modified with PANI applied as electrode materials for supercapacitor. Chem. Lett., 2023, 52, 17–21. 24. Mohamed, M. G., Ahmed, M. M. M., Du, W. T. and Kuo, S. W., Meso/microporus carbons from conjugated hyper-crosslinked polymers based on tetraphenylethane for high performance CO2 capture and supercapacitor. Molecules, 2021, 26, 738. 25. Zhu, H., Li, M., Wang, D., Zhou, S. and Peng, C., Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. J. Electrochem. Soc., 2017, 164, A1820–A1825. 26. Du, H., Xie, Y., Xia, C., Wang, W. and Tian, F., Electrochemical capacitance of polypyrrole–titanium nitride and polypyrrole–titania nanotube hybrids. New J. Chem., 2014, 38, 1284–1293. 27. Ye, Q. et al., In situ hybridization of polyaniline on Mn oxide for high-performance supercapacitor. J. Energy Storage, 2021, 36. 28. Li, M., Cheng, J. P., Wang, J., Liu, F. and Zhang, X. B., The growth of nickel–manganese and cobalt–manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta, 2016, 206, 108–115. 29. Li, L., Raji, A. R. O., Fei, H., Yang, Y., Samuel, E. L. G. and Tour, J. M., Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces, 2013, 5, 6622–6627.
utb.fulltext.sponsorship The present study is supported by the Hori-zon Europe project TwinVECTOR of the European Union (Grant Agree-ment No. 101078935) .
utb.wos.affiliation [Kiefer, Rudolf; Le, Quoc Bao] Ton Duc Thang Univ, Fac Appl Sci, Conducting Polymers Compos & Applicat Res Grp, Ho Chi Minh City 700000, Vietnam; [Sapurina, Irina; Bubulinca, Constantin; Munster, Lukas; Delawary, Ahmad Reshad; Kazantseva, Natalia E.; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Nad Ovcirnou 3685, Zlin 76001, Czech Republic; [Bugarova, Nikola; Micusik, Matej; Omastova, Maria] Slovak Acad Sci, Polymer Inst, Dubravska Cesta 9, Bratislava 84541, Slovakia
utb.scopus.affiliation Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; University Institute, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlin, 760 01, Czech Republic; Polymer Institute, Slovak Academy of Science, Dubravska Cesta, 9, Bratislava, 845 41, Slovakia
utb.fulltext.projects 101078935
utb.fulltext.faculty University Institute
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam