Kontaktujte nás | Jazyk: čeština English
dc.title | Composite materials for supercapacitor electrodes utilizing polypyrrole nanotubes, reduced graphene oxides and metal-organic framework | en |
dc.contributor.author | Kiefer, Rudolf | |
dc.contributor.author | Sapurina, Irina | |
dc.contributor.author | Bubulinca, Constantin | |
dc.contributor.author | Münster, Lukáš | |
dc.contributor.author | Delawary, Ahmad Reshad | |
dc.contributor.author | Bugarova, Nikola | |
dc.contributor.author | Mičušík, Matej | |
dc.contributor.author | Omastova, Maria | |
dc.contributor.author | Kazantseva, Natalia E. | |
dc.contributor.author | Sáha, Petr | |
dc.contributor.author | Le, Quoc Bao | |
dc.relation.ispartof | Current Science | |
dc.identifier.issn | 0011-3891 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2024 | |
utb.relation.volume | 127 | |
utb.relation.issue | 5 | |
dc.citation.spage | 537 | |
dc.citation.epage | 543 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Indian Acad Sciences | |
dc.identifier.doi | 10.18520/cs/v127/i5/537-543 | |
dc.relation.uri | https://www.currentscience.ac.in/show.issue.php?volume=127&issue=5 | |
dc.relation.uri | https://www.currentscience.ac.in/Volumes/127/05/0537.pdf | |
dc.subject | electrochemical devices | en |
dc.subject | metal-organic framework | en |
dc.subject | polypyrrole nanotubes | en |
dc.subject | reduced graphene oxide | en |
dc.subject | supercapacitor electrodes | en |
dc.description.abstract | Polypyrrole (PPy) is favoured in energy storage for its high pseudo-capacitive performance, notably as polypyrrole nanotubes (PPyNTs) due to their easy synthesis, cost-effectiveness and electrochemical solid properties. Metal–organic frameworks (MOFs) have also gained attention for enhancing supercapacitors (SCs). In this study, we fabricated aerogel composites with PPyNTs, MOFs and reduced graphene oxide (rGO) as SC electrode materials. Varying concentrations of PPyNTs and rGO were explored, with MOFs added to assess their impact. Electrochemical tests revealed that the composite with PPyNTs and Zn-MOF achieved the highest specific capacitance of approximately 270 F/g at 0.5 A/g. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1012182 | |
utb.identifier.obdid | 43885783 | |
utb.identifier.scopus | 2-s2.0-85203641403 | |
utb.identifier.wok | 001317708900006 | |
utb.identifier.coden | CUSCA | |
utb.source | J-wok | |
dc.date.accessioned | 2025-01-15T08:08:12Z | |
dc.date.available | 2025-01-15T08:08:12Z | |
dc.description.sponsorship | Hori-zon Europe project TwinVECTOR of the European Union [101078935]; Horizon Europe - Horizontal Pillar [101078935] Funding Source: Horizon Europe - Horizontal Pillar | |
dc.description.sponsorship | HORIZON EUROPE Framework Programme; European Commission, EC, (101078935); European Commission, EC | |
dc.description.sponsorship | HORIZON EUROPE Framework Programme; European Commission, EC, (101078935); European Commission, EC | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Sapurina, Irina | |
utb.contributor.internalauthor | Bubulinca, Constantin | |
utb.contributor.internalauthor | Münster, Lukáš | |
utb.contributor.internalauthor | Delawary, Ahmad Reshad | |
utb.contributor.internalauthor | Kazantseva, Natalia E. | |
utb.contributor.internalauthor | Sáha, Petr | |
utb.fulltext.affiliation | Rudolf Kiefer1, Irina Sapurina2, Constantin Bubulinca2, Lukas Munster2, Ahmad Reshad Delawary2, Nikola Bugarova3, Matej Mičušík3, Maria Omastova3, Natalia E. Kazantseva2, Petr Saha2 and Quoc Bao Le1,* 1 Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam 2 2 University Institute, Tomas Bata University in Zlin, Nad Ovčírnou 3685, 760 01, Zlin, Czech Republic 3 Polymer Institute, Slovak Academy of Science, Dubravska Cesta, 9, 845 41 Bratislava, Slovakia *For correspondence. (e-mail: lequocbao@tdtu.edu.vn) | |
utb.fulltext.dates | Received 18 February 2024 revised accepted 8 May 2024 | |
utb.fulltext.references | 1. González, A., Goikolea, E., Barrena, J. A. and Mysyk, R., Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev., 2016, 58, 1189–1206. 2. Quoc Bao, L. et al., Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochim. Acta, 2021, 367, 137563. 3. Patil, S. H., Gaikwad, A. P., Sathaye, S. D. and Patil, K. R., To form layer by layer composite film in view of its application as supercapacitor electrode by exploiting the techniques of thin films formation just around the corner. Electrochim. Acta, 2018, 265, 556–568. 4. Tran, V. C., Sahoo, S., Hwang, J., Nguyen, V. Q. and Shim, J.-J., Poly(aniline‑co‑pyrrole)-spaced graphene aerogel for advanced supercapacitor electrodes. J. Electroanal. Chem., 2018, 810, 154–160. 5. Niu, Z. et al., A universal strategy to prepare functional porous graphene hybrid architectures. Adv. Mater., 2014, 26, 3681–3687. 6. Le, Q. B. et al., Effect of PANI and PPy on electrochemical performance of rGO/ZnMn2O4 aerogels as electrodes for supercapacitors. J. Electron. Mater., 2020, 49, 4697–4706. 7. Kopecká, J. et al., Polypyrrole nanotubes: mechanism of formation. RSC Adv., 2014, 4, 1551–1558. 8. Cherusseri, J., Pandey, D., Sambath Kumar, K., Thomas, J. and Zhai, L., Flexible supercapacitor electrodes using metal–organic frameworks. Nanoscale, 2020, 12, 17649–17662. 9. Baumann, A. E., Burns, D. A., Liu, B. and Thoi, V. S., Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem., 2019, 2, 1–14. 10. Pachfule, P., Shinde, D., Majumder, M. and Xu, Q., Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chem., 2016, 8, 718–724. 11. Le, Q. B. et al., Electrochemical performance of composite electrodes based on rGO, Mn/Cu metal–organic frameworks, and PANI. Sci. Rep., 2022, 12, 1–13. 12. Le, Q. B., Fei, H., Bubulinca, C., Ngwabebhoh, F. A., Kazantseva, N. E. and Saha, P., Reduced graphene oxide composited with NiMOF and PANI applied as electrodes for supercapacitor. ECS Trans., 2020, 99, 93–101. 13. Chougule, M. A., Pawar, S. G., Godse, P. R., Mulik, R. N., Sen, S. and Patil, V. B., Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett., 2011, 1, 6–10. 14. Alazmi, A., El Tall, O., Rasul, S., Hedhili, M. N., Patole, S. P. and Costa, P. M. F. J., A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale, 2016, 8, 17782–17787. 15. Arjun, N., Uma, K., Pan, G.-T., Yang, T. C. K. and Sharmila, G., One-pot synthesis of covalently functionalized reduced graphene oxide–polyaniline nanocomposite for supercapacitor applications. Clean Technol. Environ. Policy, 2018, 20, 2025–2035. 16. Shao, Q. et al., Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes. J. Power Sources, 2015, 278, 751–759. 17. Alcaraz-Espinoza, J. J., De Melo, C. P., and De Oliveira, H. P., Fabrication of highly flexible hierarchical polypyrrole/carbon nanotube on eggshell membranes for supercapacitors. ACS Omega, 2017, 2, 2866–2877. 18. Wang, J., Xu, Y., Wang, J., Du, X., Xiao, F. and Li, J., High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synth. Met., 2010, 160, 1826–1831. 19. Gilshteyn, E. P. et al., Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology, 2018, 29(32), 325501; doi:10.1088/1361-6528/aac658. 20. Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O. and Bélanger, D., Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc., 2006, 153, A2171. 21. Le, Q. B., Kiefer, R., Vo, P. N. X., Kazantseva, N. E. and Saha, P., Conducting polymers for pseudocapacitors. In Pseudocapacitors Engineering Materials (ed. Gupta, R. K.), Springer, Cham, 2024, pp. 157–175; https://doi.org/10.1007/978-3-031-45430-1_9. 22. Sheberla, D., Bachman, J. C., Elias, J. S., Sun, C. J., Shao-Horn, Y. and Dincǎ, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Mater., 2017, 16, 220–224. 23. Khuyen, N. Q., Kiefer, R. and Le, Q. B., rGO/Ni-MOF composite modified with PANI applied as electrode materials for supercapacitor. Chem. Lett., 2023, 52, 17–21. 24. Mohamed, M. G., Ahmed, M. M. M., Du, W. T. and Kuo, S. W., Meso/microporus carbons from conjugated hyper-crosslinked polymers based on tetraphenylethane for high performance CO2 capture and supercapacitor. Molecules, 2021, 26, 738. 25. Zhu, H., Li, M., Wang, D., Zhou, S. and Peng, C., Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. J. Electrochem. Soc., 2017, 164, A1820–A1825. 26. Du, H., Xie, Y., Xia, C., Wang, W. and Tian, F., Electrochemical capacitance of polypyrrole–titanium nitride and polypyrrole–titania nanotube hybrids. New J. Chem., 2014, 38, 1284–1293. 27. Ye, Q. et al., In situ hybridization of polyaniline on Mn oxide for high-performance supercapacitor. J. Energy Storage, 2021, 36. 28. Li, M., Cheng, J. P., Wang, J., Liu, F. and Zhang, X. B., The growth of nickel–manganese and cobalt–manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta, 2016, 206, 108–115. 29. Li, L., Raji, A. R. O., Fei, H., Yang, Y., Samuel, E. L. G. and Tour, J. M., Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl. Mater. Interfaces, 2013, 5, 6622–6627. | |
utb.fulltext.sponsorship | The present study is supported by the Hori-zon Europe project TwinVECTOR of the European Union (Grant Agree-ment No. 101078935) . | |
utb.wos.affiliation | [Kiefer, Rudolf; Le, Quoc Bao] Ton Duc Thang Univ, Fac Appl Sci, Conducting Polymers Compos & Applicat Res Grp, Ho Chi Minh City 700000, Vietnam; [Sapurina, Irina; Bubulinca, Constantin; Munster, Lukas; Delawary, Ahmad Reshad; Kazantseva, Natalia E.; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Nad Ovcirnou 3685, Zlin 76001, Czech Republic; [Bugarova, Nikola; Micusik, Matej; Omastova, Maria] Slovak Acad Sci, Polymer Inst, Dubravska Cesta 9, Bratislava 84541, Slovakia | |
utb.scopus.affiliation | Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam; University Institute, Tomas Bata University in Zlin, Nad Ovčírnou 3685, Zlin, 760 01, Czech Republic; Polymer Institute, Slovak Academy of Science, Dubravska Cesta, 9, Bratislava, 845 41, Slovakia | |
utb.fulltext.projects | 101078935 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | - |