Publikace UTB
Repozitář publikační činnosti UTB

Inelastic fluid models with an objective stretch rate parameter

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Inelastic fluid models with an objective stretch rate parameter en
dc.contributor.author Yao, Donggang
dc.contributor.author Zatloukal, Martin
dc.relation.ispartof Journal of Non-Newtonian Fluid Mechanics
dc.identifier.issn 0377-0257 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1873-2631 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2024
utb.relation.volume 334
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.jnnfm.2024.105320
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0377025724001368
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0377025724001368/pdfft?md5=ecdf55d1afc54da63bc7d04ff878aac9&pid=1-s2.0-S0377025724001368-main.pdf
dc.subject inelastic flow en
dc.subject generalized non-newtonian fluid en
dc.subject Schur decomposition en
dc.subject objective velocity gradient en
dc.subject stretch rate en
dc.description.abstract This paper presents an extension to the Generalized Newtonian Fluid (GNF) model, where the effects of different flow modes can be discerned. While existing GNF models have proven valuable in simulating processes like molding and extrusion, they often struggle to differentiate between distinct flow modes such as planar extension and simple shear. To address this challenge, we propose a modified GNF model that integrates an objective flow-type parameter, aiming to refine flow characterization. Emphasis is placed on defining the flow-type parameter to be able to transcend viscometric flows, remain frame-indifferent, quantify deformation magnitude, and differentiate between diverse flow modes. Inspired by the new advances in vortex identification in turbulent flow, we introduce a new stretch rate tensor and a new stretch rate parameter that are derived from the real Schur form of the objective velocity gradient tensor. These elements are embedded into the constitutive modeling of non-Newtonian fluid flow. The resulting model is employed to fit polymer melt data from the literature, demonstrating excellent fitting to combined shear and extension data. The basic model uses 5 to 6 parameters for data fitting, and further enhancement may be achieved by incorporating other extracted information of the stretch rate tensor. en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1012120
utb.identifier.obdid 43885707
utb.identifier.scopus 2-s2.0-85205440548
utb.identifier.wok 001333379400001
utb.identifier.coden JNFMD
utb.source j-scopus
dc.date.accessioned 2025-01-15T08:08:08Z
dc.date.available 2025-01-15T08:08:08Z
dc.description.sponsorship National Science Foundation of USA [1927651]; Grant Agency of the Czech Republic [24-11442S]
utb.ou Department of Polymer Engineering
utb.contributor.internalauthor Zatloukal, Martin
utb.fulltext.sponsorship DY wishes to acknowledge the related financial support from the National Science Foundation of USA (Award No. 1927651). MZ wishes to acknowledge the Grant Agency of the Czech Republic (Grant No. 24–11442S) for the financial support. The authors also thank Václav Kolář from Institute of Mathematics of the Academy of Sciences of the Czech Republic for the discussion on the decomposition of the velocity gradient tensor.
utb.wos.affiliation [Yao, Donggang] Georgia Inst Technol, Sch Mat Sci & Engn, 801 Ferst Dr NW, Atlanta, GA 30332 USA; [Zatloukal, Martin] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Vavreckova 5669, Zlin 76001, Czech Republic
utb.scopus.affiliation School of Materials Science and Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, 30332-0295, GA, United States; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 760 01, Czech Republic
utb.fulltext.projects 1927651
utb.fulltext.projects 24–11442S
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam