Kontaktujte nás | Jazyk: čeština English
dc.title | Comprehensive biodegradation analysis of chemically modified poly(3-hydroxybutyrate) materials with different crystal structures | en |
dc.contributor.author | Julinová, Markéta | |
dc.contributor.author | Šašinková, Dagmar | |
dc.contributor.author | Minařík, Antonín | |
dc.contributor.author | Kaszonyiová, Martina | |
dc.contributor.author | Kalendová, Alena | |
dc.contributor.author | Kadlečková, Markéta | |
dc.contributor.author | Fayyaz Bakhsh, Ahmad | |
dc.contributor.author | Koutný, Marek | |
dc.relation.ispartof | Biomacromolecules | |
dc.identifier.issn | 1525-7797 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1526-4602 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
utb.relation.volume | 24 | |
utb.relation.issue | 11 | |
dc.citation.spage | 4939 | |
dc.citation.epage | 4957 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | American Chemical Society | |
dc.identifier.doi | 10.1021/acs.biomac.3c00623 | |
dc.relation.uri | https://pubs.acs.org/doi/10.1021/acs.biomac.3c00623 | |
dc.relation.uri | https://pubs.acs.org/doi/epdf/10.1021/acs.biomac.3c00623 | |
dc.description.abstract | This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with β-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films. | en |
utb.faculty | Faculty of Technology | |
utb.faculty | Faculty of Technology | |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011783 | |
utb.identifier.obdid | 43884961 | |
utb.identifier.scopus | 2-s2.0-85176972910 | |
utb.identifier.wok | 001092731800001 | |
utb.identifier.pubmed | 37819211 | |
utb.identifier.coden | BOMAF | |
utb.source | j-scopus | |
dc.date.accessioned | 2024-02-02T10:29:28Z | |
dc.date.available | 2024-02-02T10:29:28Z | |
dc.description.sponsorship | Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Horizon 2020, (862910); Univerzita Tomáše Bati ve Zlíně, UTB, (IGA/FT/2022/006, IGA/FT/2023/002) | |
dc.description.sponsorship | European Union's Horizon 2020 Research and Innovation Program [862910]; Internal Grant Agency of Tomas Bata University in Zlin [IGA/FT/2023/002, IGA/FT/2022/006]; Ministry of Education, Youth and Sports of the Czech Republic [90254] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Environmental Protection Engineering | |
utb.ou | Department of Physics and Material Engineering | |
utb.ou | Department of Polymer Engineering | |
utb.contributor.internalauthor | Julinová, Markéta | |
utb.contributor.internalauthor | Šašinková, Dagmar | |
utb.contributor.internalauthor | Minařík, Antonín | |
utb.contributor.internalauthor | Kaszonyiová, Martina | |
utb.contributor.internalauthor | Kalendová, Alena | |
utb.contributor.internalauthor | Kadlečková, Markéta | |
utb.contributor.internalauthor | Fayyaz Bakhsh, Ahmad | |
utb.contributor.internalauthor | Koutný, Marek | |
utb.fulltext.sponsorship | This work was carried out under European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 862910 (SEALIVE), and under the Internal Grant Agency of Tomas Bata University in Zlín (IGA/FT/2023/002 and IGA/FT/2022/006). Computational resources were provided by the e-INFRA CZ Project (ID:90254), supported by the Ministry of Education, Youth and Sports of the Czech Republic. | |
utb.wos.affiliation | [Julinova, Marketa; Sasinkova, Dagmar; Fayyazbakhsh, Ahmad; Koutny, Marek] Tomas Bata Univ Zlin, Fac Technol, Dept Environm Protect Engn, Zlin 76001, Czech Republic; [Minarik, Antonin; Kadleckova, Marketa] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Zlin, Czech Republic; [Kaszonyiova, Martina; Kalendova, Alena] Tomas Bata Univ Zlin, Fac Technol, Dept Polymer Engn, Zlin 76272, Czech Republic | |
utb.scopus.affiliation | Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, Zlín, 760 01, Czech Republic; Department of Physics and Material Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlin, 760 01, Czech Republic; Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 5669, Zlín, 760 01, Czech Republic | |
utb.fulltext.projects | 862910 | |
utb.fulltext.projects | IGA/FT/2023/002 | |
utb.fulltext.projects | IGA/FT/2022/006 | |
utb.fulltext.projects | 90254 |