Kontaktujte nás | Jazyk: čeština English
dc.title | Incorporating statistical and machine learning techniques into the optimization of correction factors for software development effort estimation | en |
dc.contributor.author | Ho, Le Thi Kim Nhung | |
dc.contributor.author | Vo Van, Hai | |
dc.contributor.author | Šilhavý, Petr | |
dc.contributor.author | Prokopová, Zdenka | |
dc.contributor.author | Šilhavý, Radek | |
dc.relation.ispartof | Journal of Software: Evolution and Process | |
dc.identifier.issn | 2047-7473 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 2047-7481 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2023 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | John Wiley and Sons Ltd | |
dc.identifier.doi | 10.1002/smr.2611 | |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/10.1002/smr.2611 | |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2611 | |
dc.subject | optimizing correction factors | en |
dc.subject | software development effort estimation | en |
dc.subject | staked generalization ensemble | en |
dc.subject | statistical and machine learning techniques | en |
dc.description.abstract | Accurate effort estimation is necessary for efficient management of software development projects, as it relates to human resource management. Ensemble methods, which employ multiple statistical and machine learning techniques, are more robust, reliable, and accurate effort estimation techniques. This study develops a stacking ensemble model based on optimization correction factors by integrating seven statistical and machine learning techniques (K-nearest neighbor, random forest, support vector regression, multilayer perception, gradient boosting, linear regression, and decision tree). The grid search optimization method is used to obtain valid search ranges and optimal configuration values, allowing more accurate estimation. We conducted experiments to compare the proposed method with related methods, such as use case points-based single methods, optimization correction factors-based single methods, and ensemble methods. The estimation accuracies of the methods were evaluated using statistical tests and unbiased performance measures on a total of four datasets, thus demonstrating the effectiveness of the proposed method more clearly. The proposed method successfully maintained its estimation accuracy across the four experimental datasets and gave the best results in terms of the sum of squares errors, mean absolute error, root mean square error, mean balance relative error, mean inverted balance relative error, median of magnitude of relative error, and percentage of prediction (0.25). The p-value for the t-test showed that the proposed method is statistically superior to other methods in terms of estimation accuracy. The results show that the proposed method is a comprehensive approach for improving estimation accuracy and minimizing project risks in the early stages of software development. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011680 | |
utb.identifier.obdid | 43885030 | |
utb.identifier.scopus | 2-s2.0-85169480450 | |
utb.identifier.wok | 001106698900001 | |
utb.source | j-scopus | |
dc.date.accessioned | 2023-12-05T11:36:28Z | |
dc.date.available | 2023-12-05T11:36:28Z | |
dc.description.sponsorship | Faculty of Applied Informatics, Tomas Bata University, (IGA/CebiaTech/2022/001, RVO/FAI/2021/002) | |
dc.description.sponsorship | Tomas Bata University in Zlin [RVO/FAI/2021/002, IGA/CebiaTech/2022/001] | |
dc.rights | Attribution-NonCommercial 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Šilhavý, Petr | |
utb.contributor.internalauthor | Prokopová, Zdenka | |
utb.contributor.internalauthor | Šilhavý, Radek | |
utb.fulltext.sponsorship | This work was supported by the Faculty of Applied Informatics, Tomas Bata University in Zlín, under projects IGA/CebiaTech/2022/001 and RVO/FAI/2021/002. | |
utb.wos.affiliation | [Ho Le Thi Kim Nhung] Univ Sci Vietnam Natl Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam; [Vo Van Hai] Ind Univ Ho Chi Minh City, Fac Informat Technol, Ho Chi Minh City, Vietnam; [Silhavy, Petr; Prokopova, Zdenka; Silhavy, Radek] Tomas Bata Univ Zlin, Fac Appl Informat, Stranemi 4511, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Faculty of Information Technology, University of Science–Vietnam National University, Ho Chi Minh City, Viet Nam; Faculty of Information Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Viet Nam; Faculty of Applied Informatics, Tomas Bata University in Zlín, Zlín, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2022/001 | |
utb.fulltext.projects | RVO/FAI/2021/002 |