Publikace UTB
Repozitář publikační činnosti UTB

Exact two-component TDDFT with simple two-electron picture-change corrections: X-ray absorption spectra near L- and M-edges of four-component quality at two-component cost

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Exact two-component TDDFT with simple two-electron picture-change corrections: X-ray absorption spectra near L- and M-edges of four-component quality at two-component cost en
dc.contributor.author Konecny, Lukas
dc.contributor.author Komorovský, Stanislav
dc.contributor.author Vícha, Jan
dc.contributor.author Ruud, Kenneth
dc.contributor.author Repiský, Michal
dc.relation.ispartof Journal of Physical Chemistry A
dc.identifier.issn 1089-5639 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2023
utb.relation.volume 127
utb.relation.issue 5
dc.citation.spage 1360
dc.citation.epage 1376
dc.type article
dc.language.iso en
dc.publisher American Chemical Society
dc.identifier.doi 10.1021/acs.jpca.2c08307
dc.relation.uri https://pubs.acs.org/doi/10.1021/acs.jpca.2c08307
dc.relation.uri https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.2c08307
dc.description.abstract X-ray absorption spectroscopy (XAS) has gained popularity in recent years as it probes matter with high spatial and elemental sensitivities. However, the theoretical modeling of XAS is a challenging task since XAS spectra feature a fine structure due to scalar (SC) and spin-orbit (SO) relativistic effects, in particular near L and M absorption edges. While full four-component (4c) calculations of XAS are nowadays feasible, there is still interest in developing approximate relativistic methods that enable XAS calculations at the two-component (2c) level while maintaining the accuracy of the parent 4c approach. In this article we present theoretical and numerical insights into two simple yet accurate 2c approaches based on an (extended) atomic mean-field exact two-component Hamiltonian framework, (e)amfX2C, for the calculation of XAS using linear eigenvalue and damped response time-dependent density functional theory (TDDFT). In contrast to the commonly used one-electron X2C (1eX2C) Hamiltonian, both amfX2C and eamfX2C account for the SC and SO two-electron and exchange-correlation picture-change (PC) effects that arise from the X2C transformation. As we demonstrate on L- and M-edge XAS spectra of transition metal and actinide compounds, the absence of PC corrections in the 1eX2C approximation results in a substantial overestimation of SO splittings, whereas (e)amfX2C Hamiltonians reproduce all essential spectral features such as shape, position, and SO splitting of the 4c references in excellent agreement, while offering significant computational savings. Therefore, the (e)amfX2C PC correction models presented here constitute reliable relativistic 2c quantum-chemical approaches for modeling XAS. © 2023 The Authors. Published by American Chemical Society. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011390
utb.identifier.obdid 43884381
utb.identifier.scopus 2-s2.0-85147524019
utb.identifier.wok 000927032700001
utb.identifier.coden JPCAF
utb.source j-scopus
dc.date.accessioned 2023-02-17T00:08:32Z
dc.date.available 2023-02-17T00:08:32Z
dc.description.sponsorship 2/0135/21; NN4654K; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: RP/CPS/2022/007; Agentúra na Podporu Výskumu a Vývoja, APVV: APVV-19-0516, APVV-21-0497; Norges Forskningsråd: 262695, 314814, 315822; Horizon 2020: 945478, SASPRO2
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Vícha, Jan
utb.fulltext.sponsorship We acknowledge the support received from the Research Council of Norway through a Centre of Excellence Grant (No. 262695), Research Grant (No. 315822), and a Mobility Grant (No. 314814) as well as the use of computational resources provided by UNINETT Sigma2─The National Infrastructure for High Performance Computing and Data Storage in Norway (Grant No. NN4654K). In addition, this project received funding from the European Unions Horizon 2020 research and innovation program under Marie Skłodowska-Curie Grant Agreement No. 945478 (SASPRO2), and the Slovak Research and Development Agency (Grant Nos. APVV-21-0497 and APVV-19-0516). S.K. acknowledges the financial support provided by the Slovak Grant Agency VEGA (Contract No. 2/0135/21). J.V. acknowledges the support of the Ministry of Education, Youth and Sports of the Czech Republic project DKRVO (RP/CPS/2022/007).
utb.scopus.affiliation Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, N-9037, Norway; Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg, 22761, Germany; Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-84536, Slovakia; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, CZ-76001, Czech Republic; Norwegian Defence Research Establishment, Kjeller, 2027, Norway; Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava, SK-84215, Slovakia
utb.fulltext.projects 262695
utb.fulltext.projects 315822
utb.fulltext.projects 314814
utb.fulltext.projects NN4654K
utb.fulltext.projects 945478 (SASPRO2)
utb.fulltext.projects APVV-21-0497
utb.fulltext.projects APVV-19-0516
utb.fulltext.projects VEGA 2/0135/21
utb.fulltext.projects DKRVO RP/CPS/2022/007
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International