Kontaktujte nás | Jazyk: čeština English
dc.title | Acoustic and mechanical testing of commercial cocoa powders | en |
dc.contributor.author | Lapčík, Lubomír | |
dc.contributor.author | Lapčíková, Barbora | |
dc.contributor.author | Gautam, Shweta | |
dc.contributor.author | Vašina, Martin | |
dc.contributor.author | Valenta, Tomáš | |
dc.contributor.author | Řepka, David | |
dc.contributor.author | Čépe, Klára | |
dc.contributor.author | Rudolf, Ondřej | |
dc.relation.ispartof | International Journal of Food Properties | |
dc.identifier.issn | 1094-2912 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1532-2386 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022 | |
utb.relation.volume | 25 | |
utb.relation.issue | 1 | |
dc.citation.spage | 2184 | |
dc.citation.epage | 2197 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Taylor & Francis Inc | |
dc.identifier.doi | 10.1080/10942912.2022.2127760 | |
dc.relation.uri | https://www.tandfonline.com/doi/full/10.1080/10942912.2022.2127760 | |
dc.relation.uri | https://www.tandfonline.com/doi/pdf/10.1080/10942912.2022.2127760?needAccess=true | |
dc.subject | cocoa fat | en |
dc.subject | particle size | en |
dc.subject | differential scanning calorimetry | en |
dc.subject | thermal analysis | en |
dc.subject | scanning electron microscopy | en |
dc.description.abstract | In the present study, commercial cocoa powders with different cocoa fat contents were studied. It was found that the cocoa powders' flow patterns were of a cohesive to highly cohesive characters. It was demonstrated, that the powders of higher crystalline structure were less flowable compared to the ones with the more amorphous ones. It was observed by SEM that the studied cocoa powders of higher cocoa fat content and the ones with the dietary fibers content (sample 2) exhibited more amorphous structure. The predominantly smooth surface structure of the higher fat content cocoa powder allowed its higher dense packing, triggering the decreased sound absorption typical for non-porous materials as quantified by NRC of 0.289 (sample 1, 100 mm material height) and 0.227 (sample 3) to 0.182 (sample 2). The latter conclusions were also supported by the observed increase of the structural mechanical stiffness of the freely poured powder bed of high cocoa fat amorphous powders, as resulting in the increasing magnitude of the K-l of 12.83 MPa (sample 1, 100 mm material height) and 19.29 MPa (sample 3) to 37.82 MPa (sample 2). Melting temperatures of the samples were determined by DSC. Results were directly corresponded to the cocoa butter content. The highest enthalpy of fusion (Delta H (m)) of (23.32 +/- 0.21) J/g was obtained for the highest cocoa butter containing sample 2 (of 20-22 wt. %). Obtained values of Delta H (m) for samples 1 and 2 were of (12.38 +/- 0.20) J/g and (10.27 +/- 0.17) J/g. T-p (melt) for reversing heat flow was ranging from (30.16 +/- 0.10) degrees C to (32.28 +/- 0.10) degrees C indicating the melting of stable beta polymorph. The melting peaks observed at distinct temperatures in the non-reversing heat flow patterns were indicating melting of the unstable alpha and metastable beta' and stable beta cocoa butter polymorphic forms. | en |
utb.faculty | Faculty of Technology | |
dc.identifier.uri | http://hdl.handle.net/10563/1011161 | |
utb.identifier.obdid | 43883671 | |
utb.identifier.scopus | 2-s2.0-85139095763 | |
utb.identifier.wok | 000862596900001 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-10-18T12:15:15Z | |
dc.date.available | 2022-10-18T12:15:15Z | |
dc.description.sponsorship | Tomas Bata University in Zlin [IGA/FT/2022/005]; Palacky University Olomouc [IGA_PrF_2022_020]; Palacky University in Olomouc [IGA_ PrF_2022_020] | |
dc.description.sponsorship | Tomas Bata University in Zlin, TBU: IGA/FT/2022/005; Univerzita Palackého v Olomouci: IGA_PrF_2022_020 | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.contributor.internalauthor | Lapčík, Lubomír | |
utb.contributor.internalauthor | Lapčíková, Barbora | |
utb.contributor.internalauthor | Gautam, Shweta | |
utb.contributor.internalauthor | Vašina, Martin | |
utb.contributor.internalauthor | Valenta, Tomáš | |
utb.contributor.internalauthor | Rudolf, Ondřej | |
utb.fulltext.affiliation | Lubomír Lapčík a,b, Barbora Lapčíkova a,b, Shweta Gautam b, Martin Vašina b,c,Tomáš Valenta b, David Řepka a, Klára Čépe d, and Ondřej Rudolf b a Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic; b Faculty of Technology, Tomas Bata University in Zlín, Zlin, Czech Republic; c Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic; d CATRIN – Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic CONTACT Lubomír Lapčík lapcikl@seznam.cz Department of Physical Chemistry, Faculty of Science, The Palacky University Olomouc, 17. Listopadu 12, Olomouc 771 46, Czech Republic ORCID Lubomír Lapčík http://orcid.org/0000-0002-9917-7310 Barbora Lapčíkova http://orcid.org/0000-0002-4713-0502 Shweta Gautam http://orcid.org/0000-0003-1545-2205 Martin Vašina http://orcid.org/0000-0002-8506-098X Tomáš Valenta http://orcid.org/0000-0001-5683-5718 David Řepka http://orcid.org/0000-0002-8340-6246 Klára Čépe http://orcid.org/0000-0003-4962-2399 Ondřej Rudolf http://orcid.org/0000-0002-5549-9385 | |
utb.fulltext.dates | Received 30 June 2022 Revised 7 September 2022 Accepted 16 September 2022 Published online: 29 Sep 2022 | |
utb.fulltext.references | 1. Figura, L.; Teixeira, A. A. Food Physics: Physical properties-measurement and Applications; Springer Science & Business Media: Berlin, 2007; pp 73–115. 2. Cuq, B.; Rondet, E.; Abecassis, J. Food Powders Engineering, between Knowhow and Science: Constraints, Stakes and Opportunities. Powder Technol. 2011, 208(2), 244–251. DOI: 10.1016/j.powtec.2010.08.012. 3. Montes, B. C.; Martínez-Alejo, J. M.; Lozano-Perez, H.; Gumy, J. C.; Zemlyanov, D.; Carvajal, M. T. A Surface Characterization Platform Approach to Study Flowability of Food Powders. Powder Technol. 2019, 357, 269–280. DOI: 10.1016/j.powtec.2019.08.072. 4. Ahmed, J.; Al-Foudari, M.; Al-Salman, F.; Almusallam, A. S. Effect of Particle Size and Temperature on Rheological, Thermal, and Structural Properties of Pumpkin Flour Dispersion. J. Food Eng. 2014, 124, 43–53. DOI: 10.1016/j.jfoodeng.2013.09.030. 5. Boonyai, P.; Bhandari, B.; Howes, T. Stickiness Measurement Techniques for Food Powders: A Review. Powder Technol. 2004, 145(1), 34–46. DOI: 10.1016/j.powtec.2004.04.039. 6. Jacquot, C.; Petit, J.; Michaux, F.; Montes, E. C.; Dupas, J.; Girard, V.; Gianfrancesco, A.; Scher, J.; Gaiani, C. Cocoa Powder Surface Composition during Aging: A Focus on Fat. Powder Technol. 2016a, 292, 195–202. DOI: 10.1016/j.powtec.2016.01.032. 7. Ben Trad, M. A.; Demers, V.; Dufresne, L. Effect of Powder Shape and Size on Rheological, Thermal, and Segregation Properties of low-pressure Powder Injection Molding Feedstocks. J. Mater. Eng. Perform. 2019, 28(9), 5551–5562. DOI: 10.1007/s11665-019-04276-9. 8. Lapčík, L.; Otyepka, M.; Otyepková, E.; Lapčíková, B.; Gabriel, R.; Gavenda, A.; Prudilová, B. Surface Heterogeneity: Information from Inverse Gas Chromatography and Application to Model Pharmaceutical Substances. Curr. Opin. Colloid Interface Sci. 2016, 24, 64–71. DOI: 10.1016/j.cocis.2016.06.010. 9. Lapčík, L.; Lapčíková, B.; Žižková, H.; Li, P.; Vojteková, V. Effect of Cocoa Fat Content on Wetting and Surface Energy of Chocolate. Potravinarstvo Slovak J Food Sci. 2017, 11(1), 410–416. DOI: 10.5219/732. 10. Minifie, B. Chocolate, Cocoa and Confectionery: Science and Technology; Springer Science & Business Media, 2012; pp 3–34. 11. Afoakwa, E. O. Cocoa Production and Processing Technology; CRC Press, 2014. 12. Palmieri, P. A.; Hartel, R. W. Crystallization of Cocoa Butter in Cocoa Powder. J. Am. Oil Chem. Soc. 2019, 96(8), 911–926. DOI: 10.1002/aocs.12247. 13. Lapčíková, B.; Lapčík, L.; Salek, R.; Valenta, T.; Lorencová, E.; Vašina, M. Physical Characterization of the Milk Chocolate Using Whey Powder. LWT. 2022, 154, 112669. DOI: 10.1016/j.lwt.2021.112669. 14. Do, T.; Vieira, J.; Hargreaves, J. M.; Mitchell, J. R.; Wolf, B. Structural Characteristics of Cocoa Particles and Their Effect on the Viscosity of Reduced Fat Chocolate. LWT Food Sci. Technol. 2011, 44(4), 1207–1211. DOI: 10.1016/j.lwt.2010.10.006. 15. Foubert, I.; Vanrolleghem, P. A.; Thas, O.; Dewettinck, K. Influence of Chemical Composition on the Isothermal Cocoa Butter Crystallization. J. Food Sci. 2004, 69(9), E478–E487. DOI: 10.1111/j.1365-2621.2004.tb09933.x. 16. Adeyeye, E. I.; Tripathi, S. Proximate, Mineral and Antinutrient Compositions of Natural Cocoa Cake, Cocoa Liquor and Alkalized Cocoa Powders Sourced in Nigeria. J. Adv. Pharmaceutical Sci.Technol. 2016, 1(3), 12–28. DOI: 10.14302/.2328-0182.japst-15-855. 17. Ilori, O. A.; Olorode, O. O.; Albert, O. M. Physical Characteristic, Proximate Composition, Polyphenol and Antinutritional Factors of Chocolate Produced from New Nigerian Cocoa Variety. Int. J. Novel Res. Interdisci. Stud. 2021, 8, 4. 18. European Parliament. Mandatory Food Information, 2022 Aug 18. 19. Svensson, D. N.; Messing, I.; Barron, J. An Investigation in Laser Diffraction Soil Particle Size Distribution Analysis to Obtain Compatible Results with Sieve and Pipette Method. Soil Tillage Res. 2022, 223, 105450. DOI: 10.1016/j.still.2022.105450. 20. Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C. I.; Compean Martínez, I.; Saavedra-Leos, M. Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers. 2019, 12(1), 5. DOI: 10.3390/polym12010005. 21. Tolstorebrov, I.; Eikevik, T. M.; Bantle, M. A DSC Determination of Phase Transitions and Liquid Fraction in Fish Oils and Mixtures of Triacylglycerides. Food Res. Int. 2014, 58, 132–140. DOI: 10.1016/j.foodres.2014.01.064. 22. Sgard, F.; Castel, F.; Atalla, N. Use of a Hybrid Adaptive Finite element/modal Approach to Assess the Sound Absorption of Porous Materials with meso-heterogeneities. Appl. Acoustics. 2011, 72(4), 157–168. DOI: 10.1016/j.apacoust.2010.10.011. 23. Han, F.; Seiffert, G.; Zhao, Y.; Gibbs, B. Acoustic Absorption Behaviour of an open-celled Aluminium Foam. J. Phys. D: Appl. Phys. 2003, 36(3), 294. DOI: 10.1088/0022-3727/36/3/312. 24. ISO, I. 10534-2: Acoustics-Determination of Sound Absorption Coefficient and Impedance in Impedance tubes-Part 2: Transfer-function Method. BS EN ISO. 2001, 10534–10532. 25. Buratti, C. Indoor Noise Reduction Index with an Open Window (Part II). Appl. Acoustics. 2006, 67(5), 383–401. DOI: 10.1016/j.apacoust.2005.07.006. 26. Tiwari, V.; Shukla, A.; Bose, A. Acoustic Properties of Cenosphere Reinforced Cement and Asphalt Concrete. Appl. Acoustics. 2004, 65(3), 263–275. DOI: 10.1016/j.apacoust.2003.09.002. 27. Okudaira, Y.; Kurihara, Y.; Ando, H.; Satoh, M.; Miyanami, K. Sound Absorption Measurements for Evaluating Dynamic Physical Properties of a Powder Bed. Powder Technol. 1993, 77(1), 39–48. DOI: 10.1016/0032-5910(93)85005-T. 28. Yanagida, T.; Matchett, A. J.; Coulthard, J. M.; Asmar, B. N.; Langston, P. A.; Walters, J. K. Dynamic Measurement for the Stiffness of Loosely Packed Powder Beds. AIChE J. 2002, 48(11), 2510–2517. DOI: 10.1002/aic.690481110. 29. Lapčík, L.; Lapčíková, B.; Otyepková, E.; Otyepka, M.; Vlček, J.; Buňka, F.; Salek, R. N. Surface Energy Analysis (SEA) and Rheology of Powder Milk Dairy Products. Food Chem. 2015, 174, 25–30. DOI: 10.1016/j.foodchem.2014.11.017. 30. Afoakwa, E. O.; Paterson, A.; Fowler, M.; Vieira, J. Characterization of Melting Properties in Dark Chocolates from Varying Particle Size Distribution and Composition Using Differential Scanning Calorimetry. Food Res. Int. 2008a, 41(7), 751–757. DOI: 10.1016/j.foodres.2008.05.009. 31. Afoakwa, E. O.; Paterson, A.; Fowler, M.; Vieira, J. Characterization of Melting Properties in Dark Chocolates from Varying Particle Size Distribution and Composition Using Differential Scanning Calorimetry. Food Res. Int. 2008b, 41(7), 751–757. 10.1016/j.foodres.2008.05.009. 32. Deora, N. S.; Misra, N. N.; Deswal, A.; Mishra, H. N.; Cullen, P. J.; Tiwari, B. K. Ultrasound for Improved Crystallisation in Food Processing. Food Eng. Rev. 2013a, 5(1), 36–44. DOI: 10.1007/s12393-012-9061-0. 33. Pore, M.; Seah, H. H.; Glover, J.; Holmes, D. J.; Johns, M. L.; Wilson, D. I.; Moggridge, G. D. In-situ X-ray Studies of Cocoa Butter Droplets Undergoing Simulated Spray Freezing. J. Am. Oil Chem. Soc. 2009, 86(3), 215–225. DOI: 10.1007/s11746-009-1349-8. 34. Smith, K. W.;. Cocoa Butter and Cocoa Butter Equivalents. In Structured and Modified Lipids, 2001; pp 401–422. 35. Afoakwa, E. O.; Paterson, A.; Fowler, M. Factors Influencing Rheological and Textural Qualities in chocolate–a Review. Trends Food Sci. Technol. 2007, 18(6), 290–298. DOI: 10.1016/j.tifs.2007.02.002. 36. Deora, N. S.; Misra, N. N.; Deswal, A.; Mishra, H. N.; Cullen, P. J.; Tiwari, B. K. Ultrasound for Improved Crystallisation in Food Processing. Food Eng. Rev. 2013b, 5(1), 36–44. 10.1007/s12393-012-9061-0. 37. Ribeiro, A. P. B.; Masuchi, M. H.; Miyasaki, E. K.; Domingues, M. A. F.; Stroppa, V. L. Z.; de Oliveira, G. M.; Kieckbusch, T. G. Crystallization Modifiers in Lipid Systems. J. Food Sci. Technol. 2015, 52(7), 3925–3946. DOI: 10.1007/s13197-014-1587-0. 38. Joshi, B. L.; Zielbauer, B. I.; Vilgis, T. A. Comparative Study on Mixing Behavior of Binary Mixtures of Cocoa butter/tristearin (CB/TS) and Cocoa butter/coconut Oil (CB/CO). Foods. 2020, 9(3), 327. DOI: 10.3390/foods9030327. 39. Talhat, A. M.; Lister, V. Y.; Moggridge, G. D.; Rasburn, J. R.; Wilson, D. I. Development of a Single Droplet Freezing Apparatus for Studying Crystallisation in Cocoa Butter Droplets. J. Food Eng. 2015, 156, 67–83. DOI: 10.1016/j.jfoodeng.2015.02.010. 40. Jacquot, C.; Petit, J.; Michaux, F.; Montes, E. C.; Dupas, J.; Girard, V.; Gianfrancesco, A.; Scher, J.; Gaiani, C. Cocoa Powder Surface Composition during Aging: A Focus on Fat. Powder Technol. 2016b, 292, 195–202. 10.1016/j.powtec.2016.01.032 41. Ghazani, S. M.; Marangoni, A. G. Molecular Origins of Polymorphism in Cocoa Butter. Ann. Rev. Food Sci. Technol. 2021, 12(1), 567–590. DOI: 10.1146/annurev-food-070620-022551. 42. Toledo, M.;. Analysis of Melting Process Using TOPEM ®. In Mettler Toledo Thermal Analysis UserCom 25, Mettler-Toledo AG. 2010. 43. ElKhori, S.; Paré, J. J.; Bélanger, J. M.; Pérez, E. The microwave-assisted Process (MAPTM1): Extraction and Determination of Fat from Cocoa Powder and Cocoa Nibs. J. Food Eng. 2007, 79(3), 1110–1114. DOI: 10.1016/j.jfoodeng.2006.01.089. 44. Ramos-Escudero, F.; Casimiro-Gonzales, S.; Á, F.-P.; Chávez, K. C.; Gómez-Mendoza, J.; de la Fuente-Carmelino, L.; Muñoz, A. M. Colour, Fatty Acids, Bioactive Compounds, and Total Antioxidant Capacity in Commercial Cocoa Beans (Theobroma Cacao L.). LWT. 2021, 147, 111629. DOI: 10.1016/j.lwt.2021.111629. 45. Lapčík, L.; Vašina, M.; Lapčíková, B.; Otyepková, E.; Waters, K. E. Investigation of Advanced Mica Powder Nanocomposite Filler Materials: Surface Energy Analysis, Powder Rheology and Sound Absorption Performance. Compos. B Eng. 2015, 77, 304–310. DOI: 10.1016/j.compositesb.2015.03.056. 46. Lapčíková, B.; Burešová, I.; Lapčík, L.; Dabash, V.; Valenta, T. Impact of Particle Size on Wheat Dough and Bread Characteristics. Food Chem. 2019, 297, 124938. DOI: 10.1016/j.foodchem.2019.06.005. | |
utb.fulltext.sponsorship | This work was supported by the Tomas Bata University in Zlin [IGA/FT/2022/005]; Palacký University Olomouc [IGA_PrF_2022_020].Financial supports from the internal grants of Palacky University in Olomouc (project number IGA_PrF_2022_020) and of Tomas Bata University in Zlin (project number IGA/FT/2022/005) were gratefully acknowledged. | |
utb.wos.affiliation | [Lapcik, Lubomir; Lapcikova, Barbora; Repka, David] Palacky Univ Olomouc, Fac Sci, Dept Phys Chem, 17 Listopadu 12, Olomouc 77146, Czech Republic; [Lapcik, Lubomir; Lapcikova, Barbora; Gautam, Shweta; Vasina, Martin; Valenta, Tomas; Rudolf, Ondrej] Tomas Bata Univ Zlin, Fac Technol, Zlin, Czech Republic; [Vasina, Martin] VSB Tech Univ Ostrava, Fac Mech Engn, Dept Hydromech & Hydraul Equipment, Ostrava, Czech Republic; [Cepe, Klara] Palacky Univ Olomouc, CATRIN Reg Ctr Adv Technol & Mat, Olomouc, Czech Republic | |
utb.scopus.affiliation | Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Zlin, Czech Republic; Department of Hydromechanics and Hydraulic Equipment, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, Poruba, Ostrava, Czech Republic; CATRIN – Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic | |
utb.fulltext.projects | IGA/FT/2022/005 | |
utb.fulltext.projects | IGA_PrF_2022_020 | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - | |
utb.fulltext.ou | - |