Kontaktujte nás | Jazyk: čeština English
dc.title | Dual patterning of self-assembling spider silk protein nanofibrillar networks | en |
dc.contributor.author | Lamberger, Zan | |
dc.contributor.author | Kocourková, Karolína | |
dc.contributor.author | Minařík, Antonín | |
dc.contributor.author | Humenik, Martin | |
dc.relation.ispartof | Advanced Materials Interfaces | |
dc.identifier.issn | 2196-7350 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2022-11 | |
utb.relation.volume | 9 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | Wiley | |
dc.identifier.doi | 10.1002/admi.202201173 | |
dc.relation.uri | https://doi.org/10.1002/admi.202201173 | |
dc.relation.uri | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/admi.202201173?download=true | |
dc.subject | nanofibrils | en |
dc.subject | patterning | en |
dc.subject | photolithography | en |
dc.subject | proteins | en |
dc.subject | self-assembly | en |
dc.subject | silk | en |
dc.description.abstract | Self-assembly of a recombinant spider silk protein into nanofibrillar networks in combination with photolithography is used to produce diversely functionalized micropattern. Amino-modified substrates coated with a positive tone photoresist are processed into 1 mu m deep arbitrarily shaped microwells, at the bottom of which spider silk proteins are covalently coupled to the deprotected aminated surface. The protein layer serves to seed the self-assembly of nanofibrils from the same protein in the microwells, forming immobilized few nanometers thin networks after the stripping of the photoresist. The nanofibrous micropattern can be functionalized by employing fluorescently modified spider silk variants during the self-assembly or by later covalent modification with nucleic acids. By repeating the photolithography and fibril assembly procedures, two functionally different and spatially defined pattern are created. | en |
utb.faculty | Faculty of Technology | |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1011134 | |
utb.identifier.obdid | 43884006 | |
utb.identifier.scopus | 2-s2.0-85137825437 | |
utb.identifier.wok | 000852788400001 | |
utb.source | J-wok | |
dc.date.accessioned | 2022-09-20T08:07:44Z | |
dc.date.available | 2022-09-20T08:07:44Z | |
dc.description.sponsorship | Bavarian-Czech Academic Agency (Bayerisch-Tschechische Hochschulagentur) BTHA Grant [JC-2019-21]; Czech Science Foundation [22-33307S]; TBU Grant [IGA/FT/2022/009]; Projekt DEAL | |
dc.description.sponsorship | JC‐2019‐21; Tomas Bata University in Zlin, TBU: IGA/FT/2022/009; Grantová Agentura České Republiky, GA ČR: 22–33307S | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Department of Physics and Materials Engineering | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Kocourková, Karolína | |
utb.contributor.internalauthor | Minařík, Antonín | |
utb.fulltext.affiliation | Zan Lamberger, Karolína Kocourková, Antonín Minařík, and Martin Humenik* Z. Lamberger,[+] M. Humenik Department of Biomaterials Faculty of Engineering Science Universität Bayreuth Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany E-mail: martin.humenik@bm.uni-bayreuth.de K. Kocourková, A. Minařík Department of Physics and Materials Engineering Faculty of Technology Tomas Bata University in Zlín Vavrečkova 275, Zlín 760 01, Czech Republic K. Kocourková, A. Minařík Centre of Polymer Systems Tomas Bata University in Zlín Třída Tomáše Bati 5678, Zlín 76001, Czech Republic [+]Present addresses: Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany | |
utb.fulltext.dates | Received: May 26, 2022 Revised: August 16, 2022 First published: 12 September 2022 | |
utb.fulltext.references | [1] C. Wiles, P. Watts, S. J. Haswell, E. Pombo-Villar, Lab Chip 2001, 1, 100. [2] F. Qian, M. Baum, Q. Gu, D. E. Morse, Lab Chip 2009, 9, 3076. [3] R. D. Chambers, D. Holling, R. C. Spink, G. Sandford, Lab Chip 2001, 1, 132. [4] S. C. Sealfon, T. T. Chu, Methods Mol. Biol. 2011, 671, 3. [5] L. A. Low, C. Mummery, B. R. Berridge, C. P. Austin, D. A. Tagle, Nat. Rev. Drug Discovery 2021, 20, 345. [6] J. Dornhof, J. Kieninger, H. Muralidharan, J. Maurer, G. A. Urban, A. Weltin, Lab Chip 2021, 22, 225. [7] M. Matlosz, W. Ehrfeld, in Microreaction Technology (Eds: J.P. Baselt), Springer, Berlin, Heidelberg 2001. [8] H.-C. Lai, C.-H. Wang, T.-M. Liou, G.-B. Lee, Lab Chip 2014, 14, 2002. [9] K. Kikkeri, D. Wu, J. Voldman, Lab Chip 2021, 22, 100. [10] O. J. Scheideler, C. Yang, M. Kozminsky, K. I. Mosher, R. Falcón-Banchs, E. C. Ciminelli, A. W. Bremer, S. A. Chern, D. V. Schaffer, L. L. Sohn, Sci. Adv. 2020, 6, eaay5696. [11] L. Huang, X. Zhang, Y. Feng, F. Liang, W. Wang, Lab Chip 2021, 22, 1206. [12] E. W. K. Young, D. J. Beebe, Chem. Soc. Rev. 2010, 39, 1036. [13] C. Luo, C. Xu, L. Lv, H. Li, X. Huang, W. Liu, RSC Adv. 2020, 10, 8385. [14] M. Steenackers, A. Küller, S. Stoycheva, M. Grunze, R. Jordan, Langmuir 2009, 25, 2225. [15] T. B. Stachowiak, F. Svec, J. M. J. Fréchet, Chem. Mater. 2006, 18, 5950. [16] I. Topolniak, A. M. Elert, X. Knigge, G. C. Ciftci, J. Radnik, H. Sturm, Adv. Mater. 2022, 34, 2109509. [17] X. Du, L. Li, J. Li, C. Yang, N. Frenkel, A. Welle, S. Heissler, A. Nefedov, M. Grunze, P. A. Levkin, Adv. Mater. 2014, 26, 8029. [18] D. Xu, S. M. Bartelt, S. Rasoulinejad, F. Chen, S. V. Wegner, Mater. Horiz. 2019, 6, 1222. [19] C. Dicko, D. Knight, J. M. Kenney, F. Vollrath, Int. J. Biol. Macromol. 2005, 36, 215. [20] H. Perry, A. Gopinath, D. L. Kaplan, L. Dal Negro, F. G. Omenetto, Adv. Mater. 2008, 20, 3070. [21] Y. H. Youn, S. Pradhan, L. P. da Silva, I. K. Kwon, S. C. Kundu, R. L. Reis, V. K. Yadavalli, V. M. Correlo, ACS Biomater. Sci. Eng. 2021, 7, 2466. [22] N. E. Kurland, J. Kundu, S. Pal, S. C. Kundu, V. K. Yadavalli, Soft Matter 2012, 8, 4952. [23] N. E. Kurland, T. Dey, S. C. Kundu, V. K. Yadavalli, Adv. Mater. 2013, 25, 6207. [24] B. G. Kumar, R. Melikov, M. M. Aria, A. U. Yalcin, E. Begar, S. Sadeghi, K. Guven, S. Nizamoglu, ACS Biomater. Sci. Eng. 2018, 4, 1463. [25] T. Scheibel, Microb. Cell Fact. 2004, 3, 14. [26] C. Vendrely, T. Scheibel, Macromol. Biosci. 2007, 7, 401. [27] M. Humenik, A. M. Smith, T. Scheibel, Polymers 2011, 3, 640. [28] M. Humenik, A. M. Smith, S. Arndt, T. Scheibel, J. Struct. Biol. 2015, 191, 130. [29] M. Humenik, G. Lang, T. Scheibel, Nanomed. Nanobiotechnol. 2018, 10, e1509. [30] M. Humenik, M. Magdeburg, T. Scheibel, J. Struct. Biol. 2014, 186, 431. [31] A. Molina, T. Scheibel, M. Humenik, Biomacromolecules 2019, 20, 347. [32] M. Humenik, T. Preiß, S. Gödrich, G. Papastavrou, T. Scheibel, Mater. Today Bio. 2020, 6, 100045. [33] K. Schacht, T. Scheibel, Biomacromolecules 2011, 12, 2488. [34] A. Lechner, V. T. Trossmann, T. Scheibel, Macromol. Biosci. 2021, 22, 2100390. [35] M. Humenik, T. Scheibel, ACS Nano 2014, 8, 1342. [36] S. Kumari, G. Lang, E. DeSimone, C. Spengler, V. T. Trossmann, S. Lücker, M. Hudel, K. Jacobs, N. Krämer, T. Scheibel, Mater. Today 2020, 41, 21. [37] J. Petzold, T. B. Aigner, F. Touska, K. Zimmermann, T. Scheibel, F. B. Engel, Adv. Funct. Mater. 2017, 27, 1701427. [38] M. Humenik, M. Mohrand, T. Scheibel, Bioconjugate Chem. 2018, 29, 898. [39] M. Koenig, U. König, K.-J. Eichhorn, M. Müller, M. Stamm, P. Uhlmann, Front. Chem. 2019, 7, 101. [40] A. E. M. Wammes, M. J. E. Fischer, N. J. de Mol, M. B. van Eldijk, F. P. J. T. Rutjes, J. C. M. van Hest, F. L. van Delft, Lab Chip 2013, 13, 1863. [41] D. A. Hall, J. Ptacek, M. Snyder, Mech. Ageing Dev. 2007, 128, 161. [42] J. Yan, V. A. Pedrosa, A. L. Simonian, A. Revzin, ACS Appl. Mater. Interfaces 2010, 2, 748. [43] P. Cui, S. Wang, J. Pharm. Anal. 2019, 9, 238. [44] C. Heinritz, Z. Lamberger, K. Kocourková, A. Minařík, M. Humenik, ACS Nano 2022, 16, 7626. [45] Z. Lamberger, H. Bargel, M. Humenik, Adv. Funct. Mater. 2022, https://doi.org/10.1002/adfm.202207270. [46] M. Humenik, M. Drechsler, T. Scheibel, Nano Lett. 2014, 14, 3999. [47] M. B. Elsner, H. M. Herold, S. Müller-Herrmann, H. Bargel, T. Scheibel, Biomater. Sci. 2015, 3, 543. [48] S. Wohlrab, K. Spieß, T. Scheibel, J. Mater. Chem. 2012, 22, 22050. [49] T. U. Esser, V. T. Trossmann, S. Lentz, F. B. Engel, T. Scheibel, Mater. Today Bio. 2021, 11, 100114. [50] H. Ma, J. Liu, M. M. Ali, M. A. I. Mahmood, L. Labanieh, M. Lu, S. M. Iqbal, Q. Zhang, W. Zhao, Y. Wan, Chem. Soc. Rev. 2015, 44, 1240. [51] B. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock, U. Schwarz-Linek, V. T. Moy, M. Howarth, Proc. Natl. Acad. Sci. USA 2012, 109, E690. [52] T. G. M. Schmidt, A. Skerra, Nat. Protoc. 2007, 2, 1528. [53] A. Sridhar, A. Kapoor, P. S. Kumar, M. Ponnuchamy, B. Sivasamy, D.-V. N. Vo, Environ. Chem. Lett. 2022, 20, 901. [54] V. Narayanamurthy, Z. E. Jeroish, K. S. Bhuvaneshwari, P. Bayat, R. Premkumar, F. Samsuri, M. M. Yusoff, RSC Adv. 2020, 10, 11652. [55] A. K. Grebenko, K. A. Motovilov, A. V. Bubis, A. G. Nasibulin, Small 2022, 18, 2200476. [56] D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, T. Scheibel, Biochemistry 2004, 43, 13604. [57] W. Kern, J. Electrochem. Soc. 1990, 137, 1887. [58] A. Miranda, L. Martínez, P. A. A. de Beule, MethodsX 2020, 7, 100931. | |
utb.fulltext.sponsorship | This work was financially supported by the Bavarian-Czech Academic Agency (Bayerisch-Tschechische Hochschulagentur) BTHA Grant No. JC-2019-21 and Czech Science Foundation (Project No. 22–33307S). The work of author K.K. was financially supported by TBU Grant No. IGA/FT/2022/009. The authors thank Prof. Thomas Scheibel, Chairholder of Department Biomaterials, University Bayreuth, for providing the facility to conduct this research. Open access funding enabled and organized by Projekt DEAL. | |
utb.wos.affiliation | [Lamberger, Zan; Humenik, Martin] Univ Bayreuth, Fac Engn Sci, Dept Biomat, Prof Rudiger Bormann Str 1, D-95447 Bayreuth, Germany; [Kocourkova, Karolina; Minarik, Antonin] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Vavreckova 275, Zlin 76001, Czech Republic; [Kocourkova, Karolina; Minarik, Antonin] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, Bayreuth, 95447, Germany; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, Zlín, 760 01, Czech Republic; Centre of Polymer Systems, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, Zlín, 76001, Czech Republic; [+]Present addresses: Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg, 97070, Germany | |
utb.fulltext.projects | BTHA JC-2019-21 | |
utb.fulltext.projects | GACR 22–33307S | |
utb.fulltext.projects | IGA/FT/2022/009 | |
utb.fulltext.faculty | Faculty of Technology | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Department of Physics and Materials Engineering | |
utb.fulltext.ou | Centre of Polymer Systems | |
utb.identifier.jel | - |