Kontaktujte nás | Jazyk: čeština English
dc.title | Two-degree-of-freedom feedback loop factorization for systems with parametric uncertainties and time delay in custom Matlab Toolbox | en |
dc.contributor.author | Dlapa, Marek | |
dc.relation.ispartof | IEEE International Conference on Control and Automation, ICCA | |
dc.identifier.issn | 1948-3449 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 9781665495721 | |
dc.date.issued | 2022 | |
utb.relation.volume | 2022-June | |
dc.citation.spage | 68 | |
dc.citation.epage | 73 | |
dc.event.title | 17th IEEE International Conference on Control and Automation, ICCA 2022 | |
dc.event.location | Napoli | |
utb.event.state-en | Italy | |
utb.event.state-cs | Itálie | |
dc.event.sdate | 2022-06-27 | |
dc.event.edate | 2022-06-30 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | IEEE Computer Society | |
dc.identifier.doi | 10.1109/ICCA54724.2022.9831902 | |
dc.relation.uri | https://ieeexplore.ieee.org/document/9831902 | |
dc.relation.uri | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9831902 | |
dc.description.abstract | The paper presents the Robust Control Toolbox for Time Delay Systems with Parametric Uncertainties for the Matlab system. The toolbox comprises the D-K iteration and the algebraic approach implemented for general 3rd order system with parametric uncertainties in numerator and denominator of plant transfer function and uncertain time delay with factorization of simple feedback controller to the parts in two-degree-of-freedom feedback interconnection. The uncertain time delay is treated using multiplicative uncertainty, the parametric uncertainty is modelled using general interconnection for the systems with parametric uncertainty in numerator and denominator. The toolbox has user-friendly interface empowering intuitive control. © 2022 IEEE. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1011104 | |
utb.identifier.obdid | 43883953 | |
utb.identifier.scopus | 2-s2.0-85135790951 | |
utb.identifier.wok | 001300401300010 | |
utb.source | d-scopus | |
dc.date.accessioned | 2022-08-31T06:46:59Z | |
dc.date.available | 2022-08-31T06:46:59Z | |
dc.description.sponsorship | Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT: LO1303, MSMT-7778/ 2014 | |
dc.description.sponsorship | Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)] | |
utb.contributor.internalauthor | Dlapa, Marek | |
utb.fulltext.affiliation | Marek Dlapa M. Dlapa is with the Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, 760 05 Zlín, Czech Republic (e-mail: dlapa@utb.cz). | |
utb.fulltext.dates | - | |
utb.fulltext.references | [1] B.R. Barmish, Invariance of strict Hurwitz property for polynomials with perturbed coefficients, IEEE Transactions on Automatic Control, Vol. 29, 1984. [2] B.R. Barmish, A generalization of Kharitinov’s four polynomial concept for robust stability with linearly dependent coefficient perturbations, IEEE Transactions on Automatic Control, Vol. 34, No. 2, 1989. [3] B. Barmish, J.E. Ackermann, and H.Z. Hu, The tree structured decomposition: a new approach to robust stability analysis, Proceedings Conference on Information Sciences and Systems, John Hopkins University, Baltimore, 1989. [4] B. Barmish and Z. Shi, Robust stability of class of polynomials with coefficient depending multilinearly on perturbations, IEEE Transactions on Automatic Control, Vol. 35, No. 9, 1990. [5] A.C. Bartlett, C. Hollot, and H. Lin, Root Locations of an entire polytope of polynomials: it suffices to check the edges, Mathematics of Control, Signals and Systems, Vol. 1, No. 1, pp. 61-71, 1988. [6] S. Bialas, A necessary and sufficient conditions for stability of interval matrices, International Journal of Control, Vol. 37, pp. 717-722, 1983. [7] H. Chapellat and S.P. Bhattacharyya, An alternative proof of Kharitonov’s theorem: robust stability of interval plants, IEEE Transactions on Automatic Control, Vol. 34, No. 3, 1989. [8] H. Chapellat, M. Dahleh and S.P. Bhattacharyya, Robust stability manifolds for multilinear interval systems, IEEE Transactions on Automatic Control, Vol. 38, No. 2, 1993. [9] M. Dlapa, “Differential Migration: Sensitivity Analysis and Comparison Study,” Proceedings of 2009 IEEE Congress on Evolutionary Computation (IEEE CEC 2009), May 18-21, 2009, pp. 1729-1736, ISBN 978-1-4244-2959-2. [10] M. Dlapa, „Cluster Restarted DM: New Algorithm for Global Optimisation,“ Intelligent Systems Conference 2017 (IntelliSys 2017), September 7-8, 2017, London, UK, pp. 1130-1135, ISBN 978-1-5090-6435-9. [11] M. Dlapa, „Controller Design for Highly Maneuverable Aircraft Technology Using Structured Singular Value and Direct Search Method,“ The 2020 International Conference on Unmanned Aircraft Systems (ICUAS 2020), September 1-4, 2020, Divani Caravel Hotel, Athens, Greece, ISBN 978-1-7281-4277-7/20. [12] M. Dlapa, „Robust Control Design Toolbox for General Time Delay Systems via Structured Singular Value: Unstable Systems with Factorization for Two-Degree-of-Freedom Controller,“ IEEE The 22nd International Conference on Industrial Technology (IEEE ICIT 2021), March 10-12, 2021, Valencia, Spain, pp. 93-98, ISBN 978-1-7281-5729-0/21. [13] J. C. Doyle, J. Wall, and G. Stein, “Performance and robustness analysis for structured uncertainty,” in Proceedings of the 21st IEEE Conference on Decision and Control, pp. 629-636, 1982. [14] J. C. Doyle, “Structure uncertainty in control system design,” in Proceedings of 24th IEEE Conference on decision and control, pp. 260-265, 1985. [15] J. C. Doyle, P. P. Khargonekar, and B.A. Francis, “State-space solutions to standard H2 and H∞ control problems,” IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831-847, 1989. [16] A. Packard and J. C. Doyle, “The complex structured singular value,” Automatica, vol. 29(1), pp. 71-109, 1993. [17] M. Fu, S. Dasgupta, and V. Blondel, “Robust stability under a class of nonlinear parametric perturbations,” IEEE Transactions on Automation Control, Vol. 40, No. 2, 1995. [18] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,” International Journal of Robust and Nonlinear Control, 4, 421-449, 1994. [19] V. Kharitonov, Asymptotic stability of an equilibrium position of a family of linear differential equations, Differencialnye Uravneniya, Vol. 14, 1978. [20] A. Packard and J. C. Doyle, “The complex structured singular value,” Automatica, vol. 29(1), pp. 71-109, 1993. [21] A. Sideris and R. de Gaston, Multivariable stability margin calculation with uncertainty correlated parameters, Proceedings Conference on Decision and Control, Athens, 1986. [22] G. Stein and J. Doyle, “Beyond Singular Values and Loopshapes,” AIAA Journal of Guidance and Control, Vol. 14, No. 1, pp. 5-16, 1991. [23] L. Zadeh and C. Desoer, Linear System Theory: The State Space Approach, McGraw-Hill, New York, 1963. [24] Internet: http://dlapa.cz/homeeng.htm | |
utb.fulltext.sponsorship | This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014). | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Faculty of Applied Informatics, Zlín, 760 05, Czech Republic | |
utb.fulltext.projects | LO1303(MSMT-7778/2014) | |
utb.fulltext.faculty | Faculty of Applied Informatics | |
utb.fulltext.ou | - | |
utb.identifier.jel | - |