Publikace UTB
Repozitář publikační činnosti UTB

New approach to prepare cytocompatible 3D scaffolds via the combination of sodium hyaluronate and colloidal particles of conductive polymers

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title New approach to prepare cytocompatible 3D scaffolds via the combination of sodium hyaluronate and colloidal particles of conductive polymers en
dc.contributor.author Truong, Thanh Huong
dc.contributor.author Musilová, Lenka
dc.contributor.author Gřundělová, Lenka
dc.contributor.author Kašpárková, Věra
dc.contributor.author Jasenská, Daniela
dc.contributor.author Ponížil, Petr
dc.contributor.author Minařík, Antonín
dc.contributor.author Korábková, Eva
dc.contributor.author Münster, Lukáš
dc.contributor.author Munster, Lukáš
dc.contributor.author Hanulíková, Barbora
dc.contributor.author Mráček, Aleš
dc.contributor.author Rejmontová, Petra
dc.contributor.author Humpolíček, Petr
dc.relation.ispartof Scientific Reports
dc.identifier.issn 2045-2322 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 12
utb.relation.issue 1
dc.type article
dc.language.iso en
dc.publisher Nature Portfolio
dc.identifier.doi 10.1038/s41598-022-11678-8
dc.relation.uri https://www.nature.com/articles/s41598-022-11678-8
dc.description.abstract Bio-inspired conductive scaffolds composed of sodium hyaluronate containing a colloidal dispersion of water-miscible polyaniline or polypyrrole particles (concentrations of 0.108, 0.054 and 0.036% w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) was used. The scaffolds comprised interconnected pores with prevailing porosity values of similar to 30% and pore sizes enabling the accommodation of cells. A swelling capacity of 92-97% without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of similar to 50 kPa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conductive polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1010998
utb.identifier.obdid 43884108
utb.identifier.scopus 2-s2.0-85130160229
utb.identifier.wok 000796701700069
utb.identifier.pubmed 35577841
utb.source J-wok
dc.date.accessioned 2022-06-17T09:36:15Z
dc.date.available 2022-06-17T09:36:15Z
dc.description.sponsorship Czech Science Foundation [20-28732S]; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/001, RP/CPS/2022/003]
dc.description.sponsorship RP/CPS/2022/001, RP/CPS/2022/003; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 20-28732S
dc.rights Attribution-NoDerivatives 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Truong, Thanh Huong
utb.contributor.internalauthor Musilová, Lenka
utb.contributor.internalauthor Kašpárková, Věra
utb.contributor.internalauthor Jasenská, Daniela
utb.contributor.internalauthor Ponížil, Petr
utb.contributor.internalauthor Minařík, Antonín
utb.contributor.internalauthor Korábková, Eva
utb.contributor.internalauthor Münster, Lukáš
utb.contributor.internalauthor Munster, Lukáš
utb.contributor.internalauthor Hanulíková, Barbora
utb.contributor.internalauthor Mráček, Aleš
utb.contributor.internalauthor Rejmontová, Petra
utb.contributor.internalauthor Humpolíček, Petr
utb.fulltext.affiliation Thanh Huong Truong 1 , Lenka Musilová 1,2✉ , Věra Kašpárková http://orcid.org/0000-0002-2688-919X 1,2✉ , Daniela Jasenská 1 , Petr Ponížil 1,2 , Antonín Minařík 1,2 , Eva Korábková 1 , Lukáš Münster 1 , Barbora Hanulíková 1 , Aleš Mráček 1,2 , Petra Rejmontová 1 & Petr Humpolíček https://orcid.org/0000-0002-6837-6878 1,2✉ 1 Present address: Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, Czech Republic. 2 Faculty of Technology, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic. ✉ email: lmusilova@utb.cz; vkasparkova@utb.cz; humpolicek@utb.cz
utb.fulltext.dates Received: 21 November 2021 Accepted: 22 April 2022 Published online: 16 May 2022
utb.fulltext.references 1. Zhao, Y. et al. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 255, 120164 (2020). 2. Elzinga, K. et al. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 269, 142–153 (2015). 3. Deng, Z., Guo, Y., Zhao, X., Ma, P. X. & Guo, B. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 30, 1729–1742 (2018). 4. Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R. & Mozafari, M. Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules 9 (2019). 5. Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020). 6. Sikorski, P. Electroconductive scaffolds for tissue engineering applications. Biomater. Sci. 8, 5583–5588 (2020). 7. Cui, Z. et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics 8, 2752–2764 (2018). 8. Skopalová, K. et al. Modulation of differentiation of embryonic stem cells by polypyrrole: The impact on neurogenesis. Int. J. Mol. Sci. 22 (2021). 9. Mittnacht, U. et al. Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth. Nano Lett. 10, 3933–3939 (2010). 10. Manoukian, O. S. et al. Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization. J. Biomed. Mater. Res. Part B Appl. Biomater. 107, 1792–1805 (2019). 11. Humpolicek, P., Kasparkova, V., Saha, P. & Stejskal, J. Biocompatibility of polyaniline. Synth. Met. 162, 722–727 (2012). 12. Kucekova, Z. et al. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B Biointerfaces 116, 411–417 (2014). 13. Jasenská, D. et al. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr. Polym. 253 (2021). 14. Tavsanli, B. & Okay, O. Mechanically strong hyaluronic acid hydrogels with an interpenetrating network structure. Eur. Polym. J. 94, 185–195 (2017). 15. Björninen, M. et al. Comparison of chondroitin sulfate and hyaluronic acid doped conductive polypyrrole films for adipose stem cells. Ann. Biomed. Eng. 42, 1889–1900 (2014). 16. Hemshekhar, M. et al. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 86, 917–928 (2016). 17. Collins, M. N. & Birkinshaw, C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 92, 1262–1279 (2013). 18. Hu, X. et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering. Colloids Surf. B Biointerfaces 195, 111218 (2020). 19. Isa, I. L. M. et al. Hyaluronic acid based hydrogels attenuate inflammatory receptors and neurotrophins in interleukin-1 beta induced inflammation model of nucleus pulposus cells. Biomacromol 16, 1714–1725 (2015). 20. Park, D., Cho, Y., Goh, S.-H. & Choi, Y. Hyaluronic acid–polypyrrole nanoparticles as pH-responsive theranostics. Chem. Commun. 50, 15014–15017 (2014). 21. Kim, S. et al. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights. Acta Biomater. 80, 258–268 (2018). 22. Collier, J. H., Camp, J. P., Hudson, T. W. & Schmidt, C. E. Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50, 574–584 (2000). 23. Snetkov, P., Zakharova, K., Morozkina, S., Olekhnovich, R. & Uspenskaya, M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers 12 (2020). 24. Shin, J. et al. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromol 18, 3060–3072 (2017). 25. Texidó, R., Orgaz, A., Ramos-Pérez, V. & Borrós, S. Stretchable conductive polypyrrole films modified with dopaminated hyaluronic acid. Mater. Sci. Eng. C 76, 295–300 (2017). 26. Alves, T. et al. Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial. Colloids Surf. A Physicochem. Eng. Asp. 579, 123650 (2019). 27. Bober, P. et al. Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synth. Met. 252, 122–126 (2019). 28. Humpolíček, P. et al. Polyaniline cryogels: Biocompatibility of novel conducting macroporous material. Sci. Rep. 8, 135 (2018). 29. Lu, Y. et al. Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 4, 5792 (2014). 30. Yang, J., Choe, G., Yang, S., Jo, H. & Lee, J. Y. Polypyrrole-incorporated conductive hyaluronic acid hydrogels. Biomater. Res. 20, 31 (2016). 31. Gřundělová, L. et al. Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr. Polym. 119, 142–148 (2015). 32. Holloway, J. L., Lowman, A. M. & Palmese, G. R. The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 9, 826–833 (2013). 33. Zhang, F., Wu, J., Kang, D. & Zhang, H. Development of a complex hydrogel of hyaluronan and PVA embedded with silver nanoparticles and its facile studies on Escherichia coli. J. Biomater. Sci. Polym. Ed. 24, 1410–1425 (2013). 34. Oh, S. H., An, D. B., Kim, T. H. & Lee, J. H. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater. 35, 23–31 (2016). 35. Kašpárková, V. et al. Polyaniline colloids stabilized with bioactive polysaccharides: Non-cytotoxic antibacterial materials. Carbohydr. Polym. 219, 423–430 (2019). 36. Kašpárková, V. et al. Exploring the critical factors limiting polyaniline biocompatibility. Polymers 11 (2019). 37. Li, Y. et al. Colloids of polypyrrole nanotubes/nanorods: A promising conducting ink. Synth. Met. 221, 67–74 (2016). 38. Lewandowska, K. Miscibility studies of hyaluronic acid and poly(vinyl alcohol) blends in various solvents. Materials 13 (2020). 39. Hassan, C. M. & Peppas, N. A. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites. Biopolymers PVA Hydrogels Anionic Polym. Nanocompos. 153 (2000). 40. Humpolíček, P. et al. The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C 91, 303–310 (2018).
utb.fulltext.sponsorship This work was supported by the Czech Science Foundation (20-28732S) and by the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2022/001) and DKRVO (RP/CPS/2022/003).
utb.wos.affiliation [Thanh Huong Truong; Musilova, Lenka; Kasparkova, Vera; Jasenska, Daniela; Ponizil, Petr; Minarik, Antonin; Korabkova, Eva; Munster, Lukas; Hanulikova, Barbora; Mracek, Ales; Rejmontova, Petra; Humpolicek, Petr] Tomas Bata Univ Zlin, Ctr Polymer Syst, Zlin, Czech Republic; [Musilova, Lenka; Kasparkova, Vera; Ponizil, Petr; Minarik, Antonin; Mracek, Ales; Humpolicek, Petr] Tomas Bata Univ Zlin, Fac Technol, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlin, Zlin, 760 01, Czech Republic
utb.fulltext.projects 20-28732S
utb.fulltext.projects RP/CPS/2022/001
utb.fulltext.projects RP/CPS/2022/003
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution-NoDerivatives 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution-NoDerivatives 4.0 International