Publikace UTB
Repozitář publikační činnosti UTB

Using Bert Embedding to improve memory-based collaborative filtering recommender systems

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Using Bert Embedding to improve memory-based collaborative filtering recommender systems en
dc.contributor.author Minh Hoang, Bui Nguyen
dc.contributor.author Thi Hoang Vy, Ho
dc.contributor.author Hong, Tiet Gia
dc.contributor.author Thi My Hang, Vu
dc.contributor.author Ho, Le Thi Kim Nhung
dc.contributor.author Nguyen Hoai Nam, Le
dc.relation.ispartof Proceedings - 2021 RIVF International Conference on Computing and Communication Technologies, RIVF 2021
dc.identifier.isbn 978-1-66540-435-8
dc.date.issued 2021
dc.citation.spage 150
dc.citation.epage 155
dc.event.title 15th RIVF International Conference on Computing and Communication Technologies, RIVF 2021
dc.event.location Hanoi
utb.event.state-en Vietnam
utb.event.state-cs Vietnam
dc.event.sdate 2021-12-02
dc.event.edate 2021-12-04
dc.type conferenceObject
dc.language.iso en
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.identifier.doi 10.1109/RIVF51545.2021.9642103
dc.relation.uri https://ieeexplore.ieee.org/document/9642103/authors#authors
dc.subject recommender system en
dc.subject user/item similarity en
dc.subject collaborative filtering en
dc.subject Bert embedding en
dc.description.abstract The performance of memory-based collaborative filtering recommender systems will be severely affected when the users' item preference data is sparse. In this paper, we focus on solving this issue. Our idea is to use Bert Embedding to learn a new feature set, which is denser and more semantic, for re-representing users and items. In these new features, memory-based collaborative filtering recommender systems work more efficiently. The experiments are conducted on the Movielens 100K dataset and the Yahoo Webscope R4 dataset. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1010823
utb.identifier.scopus 2-s2.0-85124108197
utb.identifier.wok 000876304800027
utb.source d-scopus
dc.date.accessioned 2022-02-15T14:29:12Z
dc.date.available 2022-02-15T14:29:12Z
dc.description.sponsorship CNTT 2021-02
utb.contributor.internalauthor Ho, Le Thi Kim Nhung
utb.fulltext.affiliation Ho Le Thi Kim Nhung Faculty of Applied Informatics, Tomas Bata University in Zlin Zlin, Czech Republic lho@utb.cz
utb.fulltext.dates -
utb.fulltext.sponsorship This research is funded by University of Science, VNUHCM under grant number CNTT 2021-02.
utb.wos.affiliation [Bui Nguyen Minh Hoang; Ho Thi Hoang Vy; Tiet Gia Hong; Vu Thi My Hang; Le Nguyen Hoai Nam] Univ Sci, Fac Informat Technol, Ho Chi Minh City, Vietnam; [Bui Nguyen Minh Hoang; Ho Thi Hoang Vy; Tiet Gia Hong; Vu Thi My Hang; Le Nguyen Hoai Nam] Vietnam Natl Univ, Ho Chi Minh City, Vietnam; [Ho Le Thi Kim Nhung] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin, Czech Republic
utb.scopus.affiliation University of Science, Faculty of Information Technology, Ho Chi Minh City, Viet Nam; Tomas Bata University In Zlin, Faculty of Applied Informatics, Zlin, Czech Republic; Vietnam National University, Ho Chi Minh city, Viet Nam
utb.fulltext.projects CNTT 2021-02
utb.fulltext.faculty Faculty of Applied Informatics
utb.fulltext.ou -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam