Kontaktujte nás | Jazyk: čeština English
dc.title | Self-organizing migrating algorithm with clustering-aided migration and adaptive perturbation vector control | en |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Pluháček, Michal | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion | |
dc.identifier.isbn | 978-1-4503-8351-6 | |
dc.date.issued | 2021 | |
dc.citation.spage | 1916 | |
dc.citation.epage | 1922 | |
dc.event.title | 2021 Genetic and Evolutionary Computation Conference, GECCO 2021 | |
dc.event.location | online | |
dc.event.sdate | 2021-07-10 | |
dc.event.edate | 2021-07-14 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery, Inc | |
dc.identifier.doi | 10.1145/3449726.3463212 | |
dc.relation.uri | https://dl.acm.org/doi/10.1145/3449726.3463212 | |
dc.subject | CEC 2021 | en |
dc.subject | clustering | en |
dc.subject | k-means | en |
dc.subject | SOMA | en |
dc.description.abstract | The paper proposes the Self-organizing Migrating Algorithm with CLustering-aided migration and adaptive Perturbation vector control (SOMA-CLP). The SOMA-CLP is the next iteration of the SOMA-CL algorithm, further enhanced by the linear adaptation of the prt control parameter used to generate a perturbation vector. The latest CEC 2021 benchmark set on a single objective bound-constrained optimization was used for the performance measurement of the improved variant. The proposed algorithm SOMA-CLP results were compared and tested for statistical significance against four other SOMA variants. © 2021 ACM. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1010468 | |
utb.identifier.obdid | 43883101 | |
utb.identifier.scopus | 2-s2.0-85111038905 | |
utb.source | d-scopus | |
dc.date.accessioned | 2021-08-17T07:36:50Z | |
dc.date.available | 2021-08-17T07:36:50Z | |
dc.description.sponsorship | IGA/CebiaTech/2021/001 | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Pluháček, Michal | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.sponsorship | This work was supported by the Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2021/001, and further by the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2021/001 |