Kontaktujte nás | Jazyk: čeština English
dc.title | Thermally conductive polyethylene/expanded graphite composites as heat transfer surface: Mechanical, thermo-physical and surface behavior | en |
dc.contributor.author | Sobolčiak, Patrik | |
dc.contributor.author | Abdulgader, Asma | |
dc.contributor.author | Mrlík, Miroslav | |
dc.contributor.author | Popelka, Anton | |
dc.contributor.author | Abdala, Ahmed A. | |
dc.contributor.author | Aboukhlewa, Abdelnasser A. | |
dc.contributor.author | Karkri, Mustapha | |
dc.contributor.author | Kiepfer, Hendrik | |
dc.contributor.author | Bart, Hans-Jörg | |
dc.contributor.author | Krupa, Igor | |
dc.relation.ispartof | Polymers | |
dc.identifier.issn | 2073-4360 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.date.issued | 2020 | |
utb.relation.volume | 12 | |
utb.relation.issue | 12 | |
dc.citation.spage | 1 | |
dc.citation.epage | 19 | |
dc.type | article | |
dc.language.iso | en | |
dc.publisher | MDPI AG | |
dc.identifier.doi | 10.3390/polym12122863 | |
dc.relation.uri | https://www.mdpi.com/2073-4360/12/12/2863 | |
dc.subject | multi-effect distillation | en |
dc.subject | high density polyethylene | en |
dc.subject | expanded graphite | en |
dc.subject | polymeric composites | en |
dc.subject | plasma treatment | en |
dc.subject | scaling | en |
dc.description.abstract | Composites of high-density polyethylene (HDPE) and expanded graphite (EG) are prepared for heat exchangers in multi-effect distillation (MED) desalination. At 50 wt.% EG loading, the thermal conductivity of HDPE was increased by 372%. Moreover, the surface wettability of the HDPE/EG composite was enhanced by corona and RF plasma treatment as demonstrated by the increase in surface free energy from 28.5 mJ/m2 for untreated HDPE/EG to 55.5 and 54.5 mJ/m2 for HDPE/EG treated by corona and RF plasma, respectively. This enhanced surface wettability was retained over a long time with only a 9% and 18% decrease in RF and corona plasma-treated samples’ surface energy after two months. The viscoelastic moduli and the complex viscosity profiles indicated that EG content dictates the optimum processing technique. At loading below 30 wt.%, the extrusion process is preferred, while above 30 wt.% loading, injection molding is preferred. The plasma treatment also improved the HDPE/EG composite overall heat transfer coefficient with an overall heat transfer coefficient of the composite reaching about 98% that of stainless steel. Moreover, the plasma-treated composite exhibited superior resistance to crystallization fouling in both CaSO4 solution and artificial seawater compared to untreated composites and stainless-steel surfaces. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. | en |
utb.faculty | University Institute | |
dc.identifier.uri | http://hdl.handle.net/10563/1010093 | |
utb.identifier.obdid | 43881838 | |
utb.identifier.scopus | 2-s2.0-85097011321 | |
utb.identifier.wok | 000602569700001 | |
utb.identifier.pubmed | 33265957 | |
utb.source | j-scopus | |
dc.date.accessioned | 2020-12-22T08:40:39Z | |
dc.date.available | 2020-12-22T08:40:39Z | |
dc.description.sponsorship | Qatar National Research Fund (A Member of the Qatar Foundation) [NPRP10-0205-170349] | |
dc.rights | Attribution 4.0 International | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.rights.access | openAccess | |
utb.ou | Centre of Polymer Systems | |
utb.contributor.internalauthor | Mrlík, Miroslav | |
utb.fulltext.affiliation | Patrik Sobolčiak 1, Asma Abdulgader 1, Miroslav Mrlik 2, Anton Popelka 1, Ahmed A. Abdala 3, Abdelnasser A. Aboukhlewa 4, Mustapha Karkri 5, Hendrik Kiepfer 6, Hans-Jörg Bart 6, Igor Krupa 1* 1 Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha, Qatar; patrik@qu.edu.qa (P.S.); asma.alkareem@qu.edu.qa (A.A.); anton.popelka@qu.edu.qa (A.P.) 2 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 76001 Zlin, Czech Republic; mrlik@utb.cz 3 Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar; ahmed.abdalla@qatar.tamu.edu 4 Qatar Environment and Energy Research Institute, HBKU, P.O. Box 5825 Doha, Qatar; aaboukhlewa@hbku.edu.qa 5 CERTES, Université Paris-Est Créteil Val de Marne, 94000 Paris, France; mustapha.karkri@u-pec.fr 6 Chair of Separation Science and Technology, P.O. Box 3049 TU Kaiserslautern, 67653 Kaiserslautern, Germany; hendrik.kiepfer@mv.uni-kl.de (H.K.); bart@mv.uni-kl.de (H.-J.B.) * Correspondence: igor.krupa@qu.edu.qa | |
utb.fulltext.dates | Received: 5 November 2020 Accepted: 23 November 2020 Published: 30 November 2020 | |
utb.fulltext.sponsorship | This work was made possible by NPRP grant No.: NPRP10-0205-170349 from the Qatar National Research Fund (A Member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. | |
utb.fulltext.sponsorship | SEM was accomplished in the Central Laboratories unit, Qatar University. Author M.M.gratefully acknowledge the Ministry of Education, Youth and Sports of the Czech Republic—DKRVO (RP/CPS/2020/003). | |
utb.wos.affiliation | [Sobolciak, Patrik; Abdulgader, Asma; Popelka, Anton; Krupa, Igor] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Mrlik, Miroslav] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Abdala, Ahmed A.] Texas A&M Univ Qatar, Chem Engn Program, POB 23874, Doha, Qatar; [Aboukhlewa, Abdelnasser A.] HBKU, Qatar Environm & Energy Res Inst, POB 5825, Doha, Qatar; [Karkri, Mustapha] Univ Paris Est Creteil Val de Marne, CERTES, F-94000 Paris, France; [Kiepfer, Hendrik; Bart, Hans-Joerg] TU Kaiserslautern, Chair Separat Sci & Technol, POB 3049, D-67653 Kaiserslautern, Germany | |
utb.scopus.affiliation | Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 76001, Czech Republic; Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar; Qatar Environment and Energy Research Institute, HBKU, P.O. Box 5825, Doha, Qatar; CERTES, Université Paris-Est Créteil Val de Marne, Paris, 94000, France; TU Kaiserslautern, P.O. Box 3049, Kaiserslautern, 67653, Germany | |
utb.fulltext.projects | NPRP10-0205-170349 | |
utb.fulltext.projects | RP/CPS/2020/003 | |
utb.fulltext.faculty | University Institute | |
utb.fulltext.ou | Centre of Polymer Systems |