Publikace UTB
Repozitář publikační činnosti UTB

The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films en
dc.contributor.author Kolářová Rašková, Zuzana
dc.contributor.author Sťahel, Pavel
dc.contributor.author Sedlaříková, Jana
dc.contributor.author Musilová, Lenka
dc.contributor.author Stupavská, Monika
dc.contributor.author Lehocký, Marián
dc.relation.ispartof Materials
dc.identifier.issn 1996-1944 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 11
utb.relation.issue 8
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/ma11081451
dc.relation.uri http://www.mdpi.com/1996-1944/11/8/1451
dc.subject antimicrobial film en
dc.subject nisin en
dc.subject physical properties en
dc.subject plasma treatment polyvinyl alcohol en
dc.subject surface characterization en
dc.description.abstract Stable antimicrobial nisin layers were prepared on the carrying medium-polyvinyl alcohol (PVA) films, crosslinked by glutaric acid. Surface plasma dielectric coplanar surface barrier discharge (DCSBD) modification of polyvinyl alcohol was used to improve the hydrophilic properties and to provide better adhesion of biologically active peptide-nisin to the polymer. The surface modification of films was studied in correlation to their cross-linking degree. Nisin was attached directly from the salt solution of the commercial product. In order to achieve a stable layer, the initial nisin concentration and the following release were investigated using chromatographic methods. The uniformity and stability of the layers was evaluated by means of zeta potential measurements, and for the surface changes of hydrophilic character, the water contact angle measurements were provided. The nisin long-term stability on the PVA films was confirmed by tricine polyacrylamide gel electrophoresis (SDS-PAGE) and by antimicrobial assay. It was found that PVA can serve as a suitable carrying medium for nisin with tunable properties by plasma treatment and crosslinking degree. © 2018 by the authors. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008161
utb.identifier.obdid 43879688
utb.identifier.scopus 2-s2.0-85051776514
utb.identifier.wok 000444112800188
utb.identifier.pubmed 30115861
utb.source j-scopus
dc.date.accessioned 2018-08-30T13:31:22Z
dc.date.available 2018-08-30T13:31:22Z
dc.description.sponsorship Czech Science Foundation (Grant Agency of the Czech Republic) [17-10813S]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Kolářová Rašková, Zuzana
utb.contributor.internalauthor Sedlaříková, Jana
utb.contributor.internalauthor Musilová, Lenka
utb.contributor.internalauthor Lehocký, Marián
utb.fulltext.affiliation Zuzana Kolarova Raskova 1,* https://orcid.org/0000-0001-5323-8053 , Pavel Stahel 2, Jana Sedlarikova 1,3, Lenka Musilova 1, Monika Stupavska 2 and Marian Lehocky 1,3 1 Centre of polymer systems, Tomas Bata University, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic; sedlarikova@utb.cz (J.S.); musilova@utb.cz (L.M.); lehocky@utb.cz (M.L.) 2 Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 267/2, 63711 Brno, Czech Republic; pstahel@physics.muni.cz (P.S.); 119414@mail.muni.cz (M.S.) 3 Department of Fat, Surfactants and Cosmetics Technology, Faculty of Technology, Tomas Bata University, Vavrečkova 275, 76001 Zlin, Czech Republic * Correspondence: zraskova@cps.utb.cz; Tel.: +420-724-333-988
utb.fulltext.dates Received: 13 July 2018 Accepted: 13 August 2018 Published: 16 August 2018
utb.fulltext.references 1. Cho, D.; Hoepker, N.; Frey, M.W. Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Mater. Lett. 2012, 68, 293–295. [CrossRef] 2. Bosco, R.; Edreira, E.U.; Wolke, J.G.; Leeuwenbugrh, C.G.; Van Den Beucken, J.; Jansen, J.A. Instructive coatings for biological guidance of bone implants. Surf. Coat. Technol. 2013, 233, 91–98. [CrossRef] 3. Hrabalikova, M.; Merchan, M.; Ganbold, S.; Sedlarik, V.; Valasek, P.; Saha, P. Flexible polyvinyl alcohol/2-hydroxypropanoic acid films: effect of residual acetyl moieties on mechanical, thermal and antibacterial properties. J. Polym. Eng. 2015, 35, 319–327. [CrossRef] 4. Yin, H.; Mix, R.; Friedrich, J.F. Combination of plasma-chemical and wet-chemical processes-a simple way to optimize interfaces in metal-polymer composites for maximal adhesion. J. Adhes. Sci. Technol. 2011, 25, 799. 5. Ducheyne, P.; Healy, K.; Dietmar, E.; Hutmacher, E.; Grainger, D.W.; Kirkpatrick, C.J. Comprehensive Biomaterials. Available online: https://www.elsevier.com/books/comprehensive-biomaterials/ducheyne/978-0-08-055302-3 (accessed on 13 August 2018). 6. Ryder, M.; Schilke, K.F.; Auxier, J.A.; McGuire, J.; Neff, J. Nisin adsorption to poly-ethylene oxide layers and its resistance to elution in the presence of fibrinogen. J. Colloid Interface Sci. 2010, 350, 194–199. [CrossRef] [PubMed] 7. Duan, J.; Park, S.I.; Daeschel, M.A.; Zhao, Y. Antimicrobialchitosan Lysozyme (CL) films and coatings for enhancingmicrobial safety of Mozzarella cheese. Food Microbiol. Saf. 2007, 72, 355–361. 8. Saraf, A.; Johnson, K.; Lind, M.L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis. Desalination 2014, 333, 1–9. [CrossRef] 9. Xiang, C.; Taylor, A.G.; Hinestroza, J.P.; Frey, M.W. Controlled release of nonionic compounds from poly (lactic acid)/cellulose nanocrystal nanocomposite fibers. J. Appl. Polym. Sci. 2013, 127, 79–86. [CrossRef] 10. Karam, L.; Jama, C.; Dhulster, P.; Chibib, N. Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J. Mater. Environ. Sci. 2013, 4, 798–821. 11. Resa, C.P.; Jagus, R.J.; Gerschenson, L.N. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films. Mater. Sci. Eng. 2014, 40, 281–287. [CrossRef] [PubMed] 12. Imran, M.; Klouj, A.; Revol-Junelles, A.M.; Desobry, S. Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. J. Food Eng. 2014, 143, 178–185. [CrossRef] 13. Zasada, K.; Lukasiewitz-Atanasov, M.; Klysik, K.; Lewandowska, J.; Gzyl Malcher, B.; Malinowska, A. One-component ultrathin films based on poly (vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes. Colloids Surf. B 2015, 135, 133–142. [CrossRef] [PubMed] 14. Park, G.Y.; Park, S.J.; Choi, M.Y.; Koo, I.G.; Byun, J.H.; Hong, J.W.; Sim, J.Y.; Collins, G.J.; Lee, J.K. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol. 2012, 21, 043001. [CrossRef] 15. Kim, K.; Lee, S.M.; Mishra, A.; Yeom, G. Atmospheric pressure plasmas for surface modification of flexible and printed electronic device. Thin Solid Films 2015, 598, 315–334. [CrossRef] 16. Donegan, M.; Dowling, D.P. Activation of PET using an RF atmospheric plasma system. Surf. Coat. Technol. 2013, 234, 53–59. [CrossRef] 17. Gubskaya, A.V.; Khan, L.J.; Valenzuela, L.M.; Lysniak, L.K. Ivestigating the release of a hydrophobic peptide from matrices of biodegradable polymers: An ittegrated method approach. Polymer 2013, 54, 3806–3820. [CrossRef] [PubMed] 18. Nisol, B.; Reniers, F. Challenges in the characteriyation of plasma polymers using XPS. J. Electron. Spectrosc. Relat. Phenom. 2015, 200, 311–331. [CrossRef] 19. Zuo, B.; Hu, Y.; Lu, X.; Zhang, S.; Fan, H.;Wang, X. Surface Properties of Poly (vinyl alcohol) Films Dominated by Spontaneous Adsorption of Ethanol and Governed by Hydrogen Bonding. J. Phys. Chem. C 2013, 117, 3396–3406. [CrossRef] 20. Schilke, K.F.; McGuire, J. Detection of nisin and fibrinogen adsorption on poly (ethylene oxide) coated polyurethane surfaces by time-of-flight secondary ion mass spectrometry (TOF-SI MS). J. Colloid Interface Sci. 2011, 358, 14–24. [CrossRef] [PubMed] 21. Kafi, K.; Magniez, K.; Fox, L.B. Surface properties relationship of atmospheric plasma treated jute composites. Compos. Sci. Technol. 2011, 71, 1692–1698. [CrossRef] 22. Siow, K.S.; Brichter, L.; Kumar, S.; Griesser, H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006, 3, 392–418. [CrossRef] 23. Bilek, F.; Krizova, T.; Lehocky, M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloid Surf. B Biointerfaces 2011, 88, 440–447. [CrossRef] [PubMed] 24. Friedrich, F.J. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design;Wiley-VCH: Weinheim, Germany, 201225. Roth, J.R. Industrial Plasma Engineering, Vol. II–Applications to Non-Thermal Plasma Processing (ISBN 7503 05444); Institute of Physics Publishing: Bristol, PA, USA, 2001. 26. Černák, M.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-Line Processing of Low-Added-Value Materials. 2009. Available online: https://www.cambridge.org/core/journals/the-european-physical-journal-applied-physics/article/diffuse-coplanar-surface-barrier-discharge-and-its-applications-for-inline-processing-of-lowaddedvaluematerials/C072CA66231A6B78F2918F260101F39E (accessed on 13 August 2018). 27. ROPLASS (Robust Plasma Systems). Available online: http://http://www.roplass.cz/roplass-robustplasma- systems (accessed on 4 May 2018). 28. Kogelschatz, U. Dielectric-barrier discharges: Their history, discharge physics and industrial applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [CrossRef] 29. Čech, J.; Hanusová, J.; St’ahel, P.; Černák, M. Diffuse coplanar surface barrier discharge in artificial air: statistical behaviour of microdischarges. Open Chem. 2015, 13, 528–540. [CrossRef] 30. Fuchs, S. Gelatin Nanoparticles as a Modern Platform for Drug Delivery-Formulation Development and Immunotherapeutic Strategies. Ph.D. Thesis, Ludwig-Maximilians-Universität München, Munich, Germany, 2010. 31. Imasaka, K.; Khaled, U.; Wei, S.; Suehiro, J. pH dependence of water-solubility of single-walled carbon nanotubes treated by microplasma in aqueous solution. Electroanalysis 2004, 16. 32. Fang, D.L.; Chen, Y.; Xu, B.; Ren, K.; He, Z.Y.; He, L.L.; Lei, Y.; Fan, C.M.; Song, X.R. Development of Lipid-Shell and Polymer Core Nanoparticles with Water-Soluble Salidroside for Anti-Cancer Therapy. Int. J. Mol. Sci. 2014, 15, 3373–3388. [CrossRef] [PubMed] 33. Rachmawati, H.; Haryadi, B. The Influence of polymer structure on the physical characteristic of intraoral film containing BSA-loaded nanoemulsion. J. Nanomed. Nanotechnol. 2014, 5, 1. [CrossRef] 34. Cruz, E.F.; Zheng, Y.; Torres, E.; Li,W.; Song,W.; Burugapalli, K. Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. 2012, 7, 3577–3590. 35. Prombutara, P.; Kulwatthanasal, Y.; Supaka,N.; Samarala, I.; Chareonpornwattana, S. Production of nisin-loaded solid lipid nanoparticles for sustained antimicrobial activity. Food Control 2012, 24, 184–190. [CrossRef] 36. Malayoglu, U.; Tekin, K.C.; Shrestha, S. Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys. Surf. Coat. Technol. 2010, 205, 1793–1798. [CrossRef] 37. Weeks, M.D.; Subramanian, R.; Vaidya, A.; Mumm, D.R. Defining optimal morphology of the bond coat–thermal barrier coating interface of air-plasma sprayed thermal barrier coating systems. Surf. Coat. Technol. 2015, 273, 50–59. [CrossRef] 38. Chang, J.Y.; Godovsky, D.Y.; Han,M.J.; Hassan, C.M.; Kim, J.; Lee, B.; Lee, Y.; Peppas, N.A.; Quirk, R.P.; Yoo, T. Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites; Springer: Heidelberg/Berlin, Germany, 2000. 39. Alkan, C.; Gunther, E.; Hiebler, S.; Himpel, M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials. Energy Convers. Manag. 2012, 64, 364–370. [CrossRef] 40. Adamczyk, Z.; Nattich, M.;Wasilewska, M.; Zaucha, M. Colloid particle and protein deposition–Electokinetic studies. Adv. Colloid Interface Sci. 2011, 168, 3–28. [CrossRef] [PubMed] 41. Wiśniewski, J.R.; Gaugaz, F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015, 87, 4110–4116. [CrossRef] [PubMed] 42. Dorgan, K.M.; Wooderchak, W.L.; Wynn, D.P.; Karschner, E.L.; Alfaro, J.F.; Cui, Y.; Zhou, Z.S.; Hevel, J.M. An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal. Biochem. 2006, 350, 249–255. [CrossRef] [PubMed] 43. Miyake, N.; Miura, T.; Sato, T.; Yoshinari, M. Effect of zeta potentials on bovine serum albumin adsorption on crown composite resin surfaces in vitro. J. Biomed. Sci. Eng. 2013, 6, 273–276. [CrossRef] 44. Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci. 2003, 261, 402–410. [CrossRef] 45. Habalikova, M.; Holcapkova, P.; Suly, P.; Sedlarik, V. Immobilization of bacteriocin nisin into a poly(vinyl alcohol) cross-linked with non-toxic dicarboxylic acid. J. Appl. Polym. Sci. 2016, 133, 43674. [CrossRef] 46. Song, Y.W.; Shan, D.Y.; Han, E.H. High corrosion resistance of electroless composite plat- ing coatings on AZ91D magnesium alloys. Electrochim. Acta 2008, 53, 2135–2143. [CrossRef] 47. Belgacem, M.N.; Gandini, A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos. Interfaces 2005, 12, 41–75. [CrossRef] 48. Cho, D.; Lee, S.; Frey, M.W. Characterizing zeta potential of functional nanofibers in a microfluidic device. J. Colloid Interface Sci. 2012, 372, 252–260. [CrossRef] [PubMed] 49. Salgın, S.; Salgın, U.; Bahadır, S. Zeta Potentials and Isoelectric points of biomolecules: The effects of ion types and ionic strengths. Int. J. Electrochem. Sci. 2012, 7, 12404–12414. 50. Balcão, V.M.; Costa, C.I.; Matos, C.M.; Moutinho, C.G.; Amorim, M.; Pintado, M.E.; Gomes, A.P.; Vila, M.M.; Teixeira, J.A. Nanoencapsulation of bovine lactoferrin for food and biopharmaceutical applications. Food Hydrocoll. 2013, 32, 425–431. [CrossRef]
utb.fulltext.sponsorship This work was supported by the grant 17-10813S of the Czech Science Foundation (Grant Agency of the Czech Republic).
utb.wos.affiliation [Raskova, Zuzana Kolarova; Sedlarikova, Jana; Musilova, Lenka; Lehocky, Marian] Tomas Bata Univ, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic; [Stahel, Pavel; Stupavska, Monika] Masaryk Univ, Fac Sci, Dept Phys Elect, Kotlarska 267-2, Brno 63711, Czech Republic; [Sedlarikova, Jana; Lehocky, Marian] Tomas Bata Univ, Fac Technol, Dept Fat Surfactants & Cosmet Technol, Vavreckova 275, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of polymer systems, Tomas Bata University, Trida Tomase Bati 5678, Zlin, Czech Republic; Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 267/2, Brno, Czech Republic; Department of Fat, Surfactants and Cosmetics Technology, Faculty of Technology, Tomas Bata University, Vavrečkova 275, Zlin, Czech Republic
utb.fulltext.projects 17-10813S
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International