Publikace UTB
Repozitář publikační činnosti UTB

Exploring the shortest path in PSO communication network

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Exploring the shortest path in PSO communication network en
dc.contributor.author Pluháček, Michal
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Viktorin, Adam
dc.contributor.author Kadavý, Tomáš
dc.relation.ispartof 2017 IEEE Symposium Series on Computational Intelligence (SSCI)
dc.identifier.isbn 978-1-5386-2725-9
dc.date.issued 2017
utb.relation.volume 2018-January
dc.citation.spage 1494
dc.citation.epage 1499
dc.event.title IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
dc.event.location Honolulu
utb.event.state-en Hawaii
utb.event.state-cs Havaj
dc.event.sdate 2017-11-27
dc.event.edate 2017-12-01
dc.type conferenceObject
dc.language.iso en
dc.publisher IEEE
dc.identifier.doi 10.1109/SSCI.2017.8285187
dc.relation.uri https://ieeexplore.ieee.org/abstract/document/8285187/
dc.subject Particle swarm en
dc.subject complex network en
dc.subject PSO en
dc.subject shortest path en
dc.description.abstract In the recent years, complex networks and other network structures were successfully combined with various evolutionary computational techniques (ECTs) to improve the performance of ECTs. In this paper, we explore the attributes of the shortest path in communication network created by the particle swarm optimization algorithm and elaborate about possible uses of the knowledge gained from the analysis of the shortest path. We present the results of one thousand repeated runs over four well-known benchmark functions. We discuss the possible correlations of attributes of the shortest path and the solution quality and fitness landscape complexity. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1007910
utb.identifier.rivid RIV/70883521:28140/17:63517158!RIV18-GA0-28140___
utb.identifier.obdid 43877148
utb.identifier.scopus 2-s2.0-85046158789
utb.identifier.wok 000428251401080
utb.source d-wok
dc.date.accessioned 2018-05-18T15:12:06Z
dc.date.available 2018-05-18T15:12:06Z
dc.description.sponsorship Grant Agency of the Czech Republic [GACR P103/15/06700S]; Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the Project CEBIA [CZ.1.05/2.1.00/03.0089]; Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2017/004]
utb.contributor.internalauthor Pluháček, Michal
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Kadavý, Tomáš
utb.fulltext.affiliation Michal Pluhacek, Roman Senkerik, Adam Viktorin, Tomas Kadavy Faculty of Applied Informatics Tomas Bata University in Zlín T.G. Masaryka 5555, 760 01 Zlín, Czech Republic {pluhacek,senkerik,aviktorin,kadavy}@fai.utb.cz
utb.fulltext.dates -
utb.fulltext.references [1] I. Zelinka, D. Davendra, J. Lampinen, R. Senkerik and M. Pluhacek, "Evolutionary algorithms dynamics and its hidden complex network structures," 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, 2014, pp. 3246-3251. [2] L. Skanderova, T. Tomas, "Differential evolution dynamics analysis by complex networks", Soft Computing, pp. 1-15, 2015. [3] P. Gajdos, P. Kromer and I. Zelinka, "Network Visualization of Population Dynamics in the Differential Evolution," 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, 2015, pp. 1522-1528. [4] D. Davendra, I. Zelinka, M. Metlicka, R. Senkerik and M. Pluhacek, "Complex network analysis of differential evolution algorithm applied to flowshop with no-wait problem," 2014 IEEE Symposium on Differential Evolution (SDE), Orlando, FL, 2014, pp. 1-8. [5] D. Davendra, I. Zelinka, R. Senkerik, M. Pluhacek, P. Komer, A. Abraham, V. Snasel, "Complex Network Analysis of Evolutionary Algorithms Applied to Combinatorial Optimisation Problem", Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014 Advances in Intelligent Systems and Computing, pp. 141-150, 2014. [6] M. Metlicka and D. Davendra, "Ensemble centralities based adaptive Artificial Bee algorithm," 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, 2015, pp. 3370-3376. [7] M. Pluhacek, A. Viktorin, R. Senkerik, T. Kadavy, I. Zelinka “PSO with Partial Population Restart Based on Complex Network Analysis” 2017 International Conference on Hybrid Artificial Intelligence Systems. Springer, Cham, 2017. p. 183-192. [8] S. Wang and J. Liu, "A multi-agent genetic algorithm for improving the robustness of communities in complex networks against attacks," 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, San Sebastián, Spain, 2017, pp. 17-22. doi: 10.1109/CEC.2017.7969290 [9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948. [10] J. Kennedy, “The particle swarm: social adaptation of knowledge,” in Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. [11] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (IEEE World Congress on Computational Intelligence), 1998, pp. 69–73.I. S. [12] R. Cheng and Y. Jin, "A Competitive Swarm Optimizer for Large Scale Optimization," in IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 191-204, Feb. 2015. [13] M. Pluhacek, T. Kadavy, R. Senkerik, A. Viktorin and I. Zelinka, "Comparing selected PSO modifications on CEC 15 benchmark set," 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, 2016, pp. 1-6. [14] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in: Proceedings of the Seventh Annual Conference on Evolutionary Programming, New York, USA, 1998, pp. 591–600. [15] Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, 1999, pp. 1945–1950. [16] F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Information Sciences, Volume 176, Issue 8, 22 April 2006, pages 937-971, ISSN 0020-0255, [17] A. P. Engelbrecht, "Particle Swarm Optimization: Iteration Strategies Revisited," 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, Ipojuca, 2013, pp. 119-123. [18] M. Pluhacek, J. Janostik, R. Senkerik, I. Zelinka and D. Davendra, “PSO as Complex Network—Capturing the Inner Dynamics—Initial Study”. In Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015, pp. 551-559. [19] M. Pluhacek, R. Senkerik, A. V. J. Janostik and D. Davendra, "Complex network analysis in PSO as an fitness landscape classifier," 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, 2016, pp. 3332-3337. [20] J. M. Dieterich and B. Hartke, “Empirical review of standard benchmark functions using evolutionary global optimization,” CoRR, vol. abs/1207.4318, 2012.
utb.fulltext.sponsorship This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014). Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.
utb.wos.affiliation [Pluhacek, Michal; Senkerik, Roman; Viktorin, Adam; Kadavy, Tomas] Tomas Bata Univ Zlin, Fac Appl Informat, TG Masaryka 5555, Zlin 76001, Czech Republic
utb.fulltext.projects P103/15/06700S
utb.fulltext.projects LO1303 (MSMT-7778/2014)
utb.fulltext.projects CZ.1.05/2.1.00/03.0089
utb.fulltext.projects IGA/CebiaTech/2017/004
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam