Publikace UTB
Repozitář publikační činnosti UTB

Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate en
dc.contributor.author Shimoga Dinesh, Ganesh
dc.contributor.author Saha, Nabanita
dc.contributor.author Zuckermann, Ronald N.
dc.contributor.author Sáha, Petr
dc.relation.ispartof MolBank
dc.identifier.issn 1422-8599 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2017
utb.relation.volume 2017
utb.relation.issue 1
dc.type article
dc.language.iso en
dc.publisher MDPI AG
dc.identifier.doi 10.3390/M925
dc.relation.uri http://www.mdpi.com/1422-8599/2017/1/M925
dc.subject FTIR en
dc.subject NMR en
dc.subject peptides en
dc.subject peptoids en
dc.subject Ugi reaction en
dc.description.abstract Ethyl({[acryloyl(furan-2-ylmethyl)amino]acetyl}amino)acetate was synthesized via Ugi four component (4C) reaction at ambient temperature. The protocol employs a reaction between formaldehyde, furfurylamine, acrylic acid, and ethyl 2-isocyanoacetate. The course of the reaction was found to be high yielding, and the resulting glycine ester derivative was well characterized by elemental analysis, FTIR, NMR spectroscopy, and mass spectrometric techniques. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1006899
utb.identifier.obdid 43877202
utb.identifier.scopus 2-s2.0-85009730038
utb.identifier.wok 000418113500004
utb.source j-scopus
dc.date.accessioned 2017-06-27T08:13:10Z
dc.date.available 2017-06-27T08:13:10Z
dc.description.sponsorship DE-AC02-05CH11231, DOE, U.S. Department of Energy; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship MSMT CR-USA Kontakt II [LH14050]; Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I [LO1504]
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Shimoga Dinesh, Ganesh
utb.contributor.internalauthor Saha, Nabanita
utb.contributor.internalauthor Sáha, Petr
utb.fulltext.affiliation Shimoga D. Ganesh 1 , Nabanita Saha 1, *, Ronald N. Zuckermann 2 and Petr Sáha 1 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic; icganeshin@gmail.com (S.D.G.); saha@utb.cz (P.S.) 2 Biological Nanostructures Facility, Molecular Foundry, Lawrence Berkeley National Laboratory1 Cyclotron Rd., Berkeley, CA 94720, USA; rnzuckermann@lbl.gov * Correspondence: nabanita@ft.utb.cz; Tel.: +420-576-038-156
utb.fulltext.dates Received: 21 September 2016 Accepted: 4 January 2017 Published: 9 January 2017
utb.fulltext.references 1. Gutteridge, A.; Thornton, J.M. Understanding nature’s catalytic toolkit. Trends Biochem. Sci. 2005, 30, 622–629. [CrossRef] [PubMed] 2. Reddington, S.C.; Howarth, M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr. Opin. Chem. Biol. 2015, 29, 94–99. [CrossRef] [PubMed] 3. Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K.; et al. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367–9371. [CrossRef] [PubMed] 4. Zuckermann, R.N. Peptoid Origins. Biopolymers (PeptSci) 2011, 96, 545–555. [CrossRef] [PubMed] 5. Zuckermann, R.N.; Kodadek, T. Peptoids as potential therapeutics. Curr. Opin. Mol. Ther. 2009, 11, 299–307. [PubMed] 6. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 2015, 20, 122–128. [CrossRef] [PubMed] 7. Mangunuru, H.P.R.; Yang, H.; Wang, G. Synthesis of peptoid based small molecular gelators by a multiple component reaction. Chem. Commun. 2013, 49, 4489–4491. [CrossRef] [PubMed] 8. Mitra, R.N.; Das, D.; Roy, S.; Das, P.K. Structure and Properties of Low Molecular Weight Amphiphilic Peptide Hydrogelators. J. Phys. Chem. B 2007, 111, 14107–14113. [CrossRef] [PubMed] 9. Worthington, P.; Pochan, D.J.; Langhans, S.A. Peptide Hydrogels—Versatile Matrices for 3D Cell Culture in Cancer Medicine. Front. Oncol. 2015, 5, 92. [CrossRef] [PubMed] 10. Tibbitt, M.W.; Anseth, K.S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 2009, 103, 655–663. [CrossRef] [PubMed] 11. Biswas, G.; Moon, H.J.; Boraty ´nski, P.; Jeong, B.; Kwon, Y.-U. Structural sensitivity of peptoid-based low molecular mass organogelator. Mater. Des. 2016, 108, 659–665. [CrossRef] 12. Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2016, 93, 753–756. [CrossRef]
utb.fulltext.sponsorship The work is supported by MŠMT CR-USA Kontakt II (LH14050) and the Molecular Foundry, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research is also supported in part by a grant from the Ministry of Education, Youth and Sports of the Czech Republic - NPU Program I (LO1504). We also acknowledge Pavel Kucharczyk, Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01, Zlin, Czech Republic, for LCMS measurement.
utb.wos.affiliation [Ganesh, Shimoga D.; Saha, Nabanita; Saha, Petr] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Tr T Bati 5678, Zlin 76001, Czech Republic; [Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Biol Nanostruct Facil Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
utb.fulltext.projects LH14050
utb.fulltext.projects DE-AC02-05CH11231
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International