Kontaktujte nás | Jazyk: čeština English
dc.title | On almost geodesic mappings π2 (e), e = ± 1 | en |
dc.contributor.author | Mikeš, Josef | |
dc.contributor.author | Pokorná, Olga | |
dc.contributor.author | Starko, Galina A. | |
dc.contributor.author | Vavříková, Hana | |
dc.relation.ispartof | 4th International Conference APLIMAT 2005 | |
dc.identifier.isbn | 809692642X | |
dc.identifier.isbn | 9788096926428 | |
dc.date.issued | 2005 | |
utb.relation.volume | 2005-January | |
dc.citation.spage | 315 | |
dc.citation.epage | 321 | |
dc.event.title | 4th International Conference APLIMAT 2005 | |
dc.event.location | Bratislava | |
utb.event.state-en | Slovakia | |
utb.event.state-cs | Slovensko | |
dc.event.sdate | 2005-02-01 | |
dc.event.edate | 2005-02-04 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Slovak University of Technology in Bratislava | |
dc.description.abstract | In this paper almost geodesic mappings of type π(e), e = ±1, of the space An with an affine connection will be investigated. We find more precise fundamental equations of these almost geodesic mappings of type π(e): An → An. We prove that the set of all Riemannian spaces Vn, for which An admits almost geodesic mappings of type π(e), where e = ±1, depends on at most 1/2n2(n + 1) + 2n + 3 real parameters. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1006271 | |
utb.identifier.obdid | 14053608 | |
utb.identifier.scopus | 2-s2.0-84958152630 | |
utb.source | d-scopus | |
dc.date.accessioned | 2016-04-28T10:53:21Z | |
dc.date.available | 2016-04-28T10:53:21Z | |
utb.contributor.internalauthor | Vavříková, Hana |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |