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A B S T R A C T

Induction heating is widely used in industrial furnaces due to its rapid response and energy efficiency. Computer-
aided modelling and simulation are necessary for the design and optimisation of these furnaces. This article
focuses on modelling and simulating induction heating of a one-dimensional spatial partial differential model for
a rectangular carbon steel billet. The simulation considered temperature dynamics, including the skin effect and
heat loss via radiation. The partial differential model was converted into a state-space model for designing a full-
state feedback Linear Quadratic Regulator (LQR) with integral action. This controller was effectively applied to
regulate the billet’s core temperature from 1000 ◦C to 1200 ◦C, under different input, R and state, Q, weighing
matrices for the LQR, as well as in the presence of disturbances.

1. Introduction

Induction heating is a widely used heating technique in various in-
dustries due to its environmental benefits. Traditional heating methods,
such as burner heating furnaces, consume more energy when compared
to induction heating equipment. As a result, incorporating induction
heating systems in hot-forging plants helps reduce energy consumption,
as well as air pollution [1]. This method efficiently generates heat
directly within the molecular level of metallic inductive materials such
as aluminium, brass, copper, steel, and semiconducting materials like
silicon carbide [2], through electromagnetic induction. Therefore, in-
duction heat treatment has become a globally recognised technique for
repairing, welding both microscopic components and larger parts, of-
fering economic as well as practical advantages [3].

In practice, the design of induction heating furnaces for various ap-
plications often involves a lengthy and expensive trial-and-error process.
Measuring and evaluating key factors such as current frequency, tem-
perature, and heat distribution can pose challenges. And computer
modelling is a suitable approach for such evaluation, as well as the

design of induction heating furnaces [4]. The modelling of the induction
heating process is based on the Maxwell equations, which constitute a
set of Partial Differential Equations (PDEs) as such a nonlinear model
that can be difficult to solve. However, the solutions can be obtained or
simplified using modelling techniques such as analytical, numerical, and
semi-analytical approaches [5–8]. Developing and simulating models of
induction heating furnaces are essential for optimising and controlling
the process to achieve the desired temperature for the heated billet. This
primarily aims to prevent hazards and ensure efficient energy utilisation
[9]. The induction heating process can be controlled using either
nonlinear or linear controllers. Linear controllers are commonly
employed in industrial control systems since many nonlinear processes
can be accurately described by linear models under specific nominal
conditions through approximation methods like transfer functions and
state-space models [10]. Additionally, linear controllers have a well-
established foundation, and identifying linear models based on process
data is relatively straightforward. They provide a good approximation in
the vicinity of the designed operating conditions, offer fast response
times, and are cost-effective to implement [11].
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Although the importance of modelling, simulation, and control has
been discussed, it is worth noting that most literature studies have pri-
marily focused on the modelling and simulation of induction heating
furnaces. These studies have often compared the results obtained from
numerical models, particularly the Finite Element Method (FEM), with
experimental data, and have generally found good agreement
[8,12–17]. However, Demidovich et al. [18] not only considered FEM
but also explored and compared other numerical methods such as finite-
difference methods (FDM), boundary element method (BEM), infinite
element method (IEM), as well as their combinations, without the use of
experimental data. Furthermore, some reports have compared analytical
models with experimental data [5,15]. For instance, Li et al. [5]
developed an analytical model to predict the temperature profile in a
planar moving induction heating process. The study demonstrated that
the temperature profile and current intensity calculated by the analyt-
ical model were similar to the results obtained from the numerical
model. Importantly, the analytical model exhibited higher computa-
tional efficiency compared to the numerical model. The advantage of
reduced experimental and computational complexity offered by the
analytical model provides support for studies such as Patidar et al.’s [6]
report on the combination of analytical and numerical methods, as well
as Areitioaurtena et al.’s [7] semi-analytical method for modelling the
induction heating process.

Based on the discussion thus far, there are limited reports on the
control of the induction heating process using the developed non-linear
PDEs models. Camber et al. [19] employed the distributed parameter
theory for the control of a continuous steel billet induction heater system
as lumped-inputs (i.e., alternating current) and distributed-outputs
(temperature profile of billet). Goodwin et al. [20] modelled the in-
duction heating process via a non-linear PDE, controlled the process
using nonlinear model predictive control (MPC), as well as compared
experimental and simulated results. Furthermore, Roetzer et al. [21]
also modelled the induction heating process via a non-linear PDE,
controlled and compared the process with different types of controllers
(i.e., Proportional integral (PI), and linear-quadratic Gaussian (LQG)
controllers). However, as highlighted by Goodwin et al. [20], the
incorporation of models to account for skin effect phenomena, and the
temperature dependency of parameters, are still limited in literature.
Particularly the control of material with the incorporation of skin effect
[22] and the temperature dependency of material properties rather than
constant values (such as density, emissivity, electrical conductivity,
thermal conductivity, and specific heat capacity) [23], can result in a
very complex nonlinear system that is difficult to solve as well as con-
trol. In practice, this kind of model can be computationally demanding,
slow, and expensive to control using nonlinear controllers [24]. There-
fore, to reduce cost and increase the controller response time, arises the
need to explore linear controllers such as the LQR, to control the in-
duction heating process using simplified approximations of non-linear
PDEs models, with both consideration of skin effect, and temperature
dependency of material properties. Although attempts have been made
to cover this research gas [25,26], however results were still inadequate.
For instance, Asadzadeh et al. [26] applied an analytical approxima-
tion, specifically the inverse model to simulate the heating process with
temperature dependency of the material properties and attempted to
consider skin effect. However, the inverse model negated the spatial
distribution of temperature along the material, hence being unable to
effectively portray the skin effect on the material. Furthermore,Kapusta
et al. [25] applied a numerical model for the simulation of induction
heating of steel billet and control via distributed-input and distributed-
parameter-output systems. Although Kapusta et al. [25] considered the
temperature dependency of the material on the model, however, the
model may not have adequately considered skin effect on the spatial
temperature distribution within the depth of the material. Therefore, it
is this research gap that this work attempts to cover. Hence the novelty
of this work entails the control via linear controller to facilitate the rapid
response of the highly nonlinear model of induction heating of steel

billet with adequate consideration of skin effect, along with temperature
dependency of its material properties. Specifically, the LQR is a reliable
linear controller that can be applied, because of its ability to deliver
optimal as well as rapid control response to the system per the designer’s
specifications (e.g. actuators characteristics or limitations) [27]. LQR is
however more suitable for systems with limited steady-state error on
application of the LQR feedback gain matrix to the controlled system
[28]. Therefore, for systems with high steady-state error the LQR is
usually incorporated with integral gain, proportional integral gain,
proportional derivative gain, etc [27,29,30]. This additional gain to the
LQR gain matrix serves to eliminate the high steady-state error, as well
as increase the controller response. However, this may result in an un-
desirable overshoot on the controller response [31]. Therefore, to limit
the effect of controller overshoot, it is necessary to optimise the LQR
weighing matrices [32]. The induction heating of steel billet is charac-
terised by high steady-state error, hence in this study, the LQR with an
integral gain is a potential linear controller that can be applied. Which to
the best of the authors’ knowledge, have not been reported in literature.

Therefore, this study aims to model, simulate, and control the in-
duction heating process of a rectangular steel billet. This will be ach-
ieved through the following objectives: Source data on the properties of
steel as a function of temperature; Develop a model and simulate the
induction heating process using a semi-numerical method, incorpo-
rating skin effect phenomena and the properties of steel as a function of
temperature; Linearise the model using the Jacobian method; Apply a
linear control scheme (i.e., LQR with integral action in conjunction with
optimised weighing matrices) to regulate the core temperature of the
steel billet. By accomplishing these objectives, the study intends to
provide a comprehensive understanding of the induction heating pro-
cess and propose an effective control strategy for maintaining the
desired temperature in the steel billet. Furthermore, the innovative
contribution of this study would entail a predictive estimation and
control of the nonlinear spatial temperature variation along the depth of
steel billet because of skin effect, as well as the non-uniform energy or
current distribution, especially regarding power losses associated with
this phenomenon.

2. Methodologies

2.1. Process description and model development

The Fig. 1a illustrates an induction heating furnace, in which the coil
carries high-frequency alternating current (AC) and generates time-
varying electromagnetic fields. These varying fields, in turn, induce
eddy currents in the billet, leading to heat generation through the Joule
effect.

The governing model to describe the induction heating can be
deduced from Ampere’s law, Equations (1) a subset of Maxwell’s law
[33] in relation to Equations (2), (3), and (4) for magnetic flux density, B
(N.A-1m− 1), electric flux density, D (C.m− 2), and conduction current
density, J (A.m− 2) respectively.

∇×H = J +
∂D
∂t (1)

D = εE (2)

B = μH (3)

J = σE (4)

In solving for electric field intensity, E (N.C-1), and magnetic field in-
tensity, H (A.m− 1), it is more convenient to introduce the magnetic
vector potential, A (N.A-1), and electric scalar potential, φ (V), as given
by Equation (5) – (6). The parameters ε, μ, and σ are respectively
emissivity, magnetic permeability (H.m− 1), and electrical conductivity
(S.m− 1) of the billet.

S. Zarghoon et al.
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B = ∇× A (5)

E = ∇φ+
∂A
∂t (6)

Substituting Equations (2), (3), and (4) into (1) yields Equation (7d).
Noting that ∂ε/∂t = 0, since ε is a constant, and (σE+ε∂ E/∂t) ≈ σE.

1
μ∇B = σE+ ∂(εE)

∂t (7a)

1
μ∇B = σE+ ε ∂E

∂t +E
∂ε
∂t (7b)

1
μ∇B = σE+ ε ∂E

∂t (7c)

1
μ∇B = σE (7d)

Furthermore, substituting Equations (5) and (6) into (7d), yields Equa-
tion (8b) upon rearranging. Noting that J = − σ∇φ.

1
μ∇

2A = σ
(

∇φ+
∂A
∂t

)

= σ∇φ+σ ∂A
∂t (8a)

1
μ∇

2A = − J+σ ∂A
∂t (8b)

Assuming heating of the steel billet is implemented by alternating cur-
rent, typically a sinusoidal harmonic, so that the magnetic vector po-
tential, A , and current density, J, can be described as A = A oejωt and
J = Jsejωt respectively. Noting that A o is the maximum magnetic vector
potential and Js is the maximum current density on billet surfaces [8].
Therefore, Equation (8b) can be expressed in terms of the sinusoidal
harmonic, Equation (9c). In this equation, j implies an imaginary state,
ω = 2πf, is the angular frequency and, t is the time of observation. In
solving this Equation (9c), the Dirichlet (A o = 0) and Neumann
boundary conditions are respectively used in the core and outer surfaces
of the billet.

1
μ∇

2A oejωt = − Jsejωt + σ ∂(A oejωt)
∂t (9a)

1
μ∇

2A oejωt = − Jsejωt + σA ojωejωt (9b)

1
μ∇

2A o = − Js+ jωσA o (9c)

The Equation (9c) can be modified to incorporate the skin effect, i.e., the
tendency of the source current to be greatest at the surface. This implies
that a higher current is induced at the surface of the billet but decreases
towards its core as described by Equation (10) [4,7] and Fig. 2.

In Equation (10), d is the distance of the core of the billet to its
surface, δ is the skin depth, Equation (11) [4,7], i.e., the depth below the
surface of the billet at which the current density has fallen by the inverse

exponent of the maximum source current at the billet outer surface, Jso.
In Equation (11), f (Hz) is the frequency of the source current, and μr is
the relative magnetic permeability of the billet to vacuum.

Js = Jsoe− d /δ (10)

δ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/(πμσf)

√
≅ 503

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/(σμrf)
√

(11)

The generic magnetic vector potential on the billet surface, A o, can be
deduced from Equation (9c) – (11), and subsequently the source heat

Fig. 1. Illustration of induction heating of a rectangular steel billet.

Fig. 2. Illustration of the skin effect for a rectangular billet.

S. Zarghoon et al.
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flux, q, can be calculated as given by Equation (12) in terms of the
conduction current density, J , which can also be expressed in terms of
A o as given by Equation (13) [8]. In this equation, R signifies the real
state, and (A oA o)

* indicates a product of complex conjugate.

J = σE = − jωσA o (12)

q =
[R(J )]

2

σ =
1
2

ω2σ(A oA o)
* (13)

The heat diffusion equation of induction heating on the billet can be
expressed by Equation (14). In the equation, ρ (Kg.m− 3) is the density,
Cp (J. Kg− 1. K− 1) is the specific heat capacity, and k (W.m− 1. k− 1) is the
thermal conductivity of the billet.

ρCp
∂T
∂t = k∇2T+ q (14)

The Equations (9c) and (14) are solved using the ordinary differential
equation solver in MATLAB (specifically, ode15s) in collaboration with
Equations (10), (11), and (13). In solving these equations the spatial
temperature distribution or partial differential, ∇, was approximated
using the Central scheme of the Finite Difference Method (FDM). This
results in Nth number of equations that represents each space point, i =
1, 2, 3…, Nx as shown in Fig. 1b. Furthermore, in Equation (14) the
Neumann boundary condition is applied to the core, and for the outer
surface of the billet, radiation heat loss, i.e., Equation (15), is applied.
The Equation (15) relates the environment or surrounding air temper-
ature, TE, to the outer temperature of the billet, T, via the Stefan-
Boltzmann constant, σ*, thermal conductivity, and emissivity.

k∇T = σ*ε
(
T4 − T4E

)
(15)

These boundary conditions applied are based on the operating condition
of industrial induction heating furnaces as well as popularly reported in
literature, for which both convection and radiative heat losses are
considered [34,35]. However, considering that the radiative heat loss is

≫ convective heat loss[36], only radiative heat loss was considered in
this work.

3. Process control theory

To effectively control the system, it is necessary to initially investi-
gate the system properties such as the system’s dynamics, stability, and
performance (i.e., the difference in steady-state error). Prior observa-
tions of induction heating systems from literature [7,15] indicate that
the system is generally stable but may exhibit significant steady-state
error. To mitigate this steady-state error, a full-state feedback Linear
Quadratic Regulator (LQR) can be employed. In general, the LQR control
aims to control linear system state variables using optimal control cost
function in finite horizon or infinite horizon. It aims to deduce gain
matrices that minimises a cost function to ensure adequate system sta-
bility and control performance. Therefore, the choice of weighing
matrices (i.e., state weighing and input weighing matrices) is crucial to
adequately design the LQR [37].

The full-state feedback LQRmethodology is based on the concept of a
cost function, denoted as, j , wherein the objective is to determine an
optimal input or actuator effort, u, that changes the state vector, x,
through minimisation of Equation (16) by adjusting the state weighing
matrix, Q. The input weighing matrix, R, is utilised to penalise the
actuator effort and achieve the desired control performance.

j =

∫
(
xTQx+uTRu

)
dt (16)

Q and R are diagonal matrices, which must be positive-definite to ensure
that when multiplied by the state, x(i.e., temperature), and input, u(i.e.,
source heat flux), the column vectors yield xTQx ≥ 0 and uTRu > 0. The
dimension Q and R matrices are defined by the number of states, s, and
inputs, w, as given by Equation (17).

Q =

⎡

⎢
⎢
⎣

Q1,1 0 ⋯ 0
0 Q2,2 ⋯ 0
0 0 ⋱ ⋮
0 0 ⋯ Qs,s

⎤

⎥
⎥
⎦&R =

⎡

⎢
⎢
⎣

R1,1 0 ⋯ 0
0 R2,2 ⋯ 0
0 0 ⋱ ⋮
0 0 ⋯ Rw,w

⎤

⎥
⎥
⎦ (17)

Typically, the LQR using the infinite horizon cost function, Equation
(16), can be structured as given by Equation (18). This follows the
traditional zero-terminal quadratic cost function, applied in conjunction
with decretised state-space model, Equation (22) – (23) as constraints.

min
u

j =
1
2
∑N

k=1

(x(kt)* − x(kt))TQ(x(kt)* − x(kt))+u(kt)TRu(kt) (18)

Subject to:

x(kt +1) = Ax(kt)+Bu(kt)

y(kt) = Cx(kt)

In Equation (18), the time scalar of the process model is divided into
discrete points, kt ∈ [1Nt], and x(k)* is the reference value of outputs.
The solution to Equation (18) is equivalent to solving the Riccati

Fig. 3. Illustration of a full-state feedback system with integral action.

Table 1
Simulation parameters utilised for the inductive heating furnace.

Parameter, symbol Value, unit

Duration of simulation,t 5000 s
Thickness of billet,ϑ 0.12 m
Number of discretised spatial points,Nx 5
Number of discretised time points,Nt 100
Differential distance between discretised spatial points, Δx ϑ/2Nx

Stefan-Boltzmann constant,σ* 5.6704 × 108

Curie temperature of steel,Tc 750℃
Permeability factor,n 0.5
Magnetic permeability of vacuum,μo 4π × 10-7H.m− 1

Relative permeability of carbon steel at room temperature,μro 10H.m− 1

Frequency of alternating current, f [17] 100 Hz
Maximum current density on billet surface,Jso 50 × 105 A.m− 2

Surrounding air temperature,TE 35℃
Initial temperature of billet,Tin 1000℃
Initial maximum magnetic vector potential,A o 0 N.A-1

S. Zarghoon et al.
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equation [38]. In solving the Riccati equation, to deduce the input, u,
Equation (21), the so-called “state transition matrix”, P, must be
deduced via Equation (19), to estimate the controller gain, K, Equation
(20).

P = ATP+PA − PBR− 1BTP+Q (19)

K = R− 1(BTP) (20)

u = − R− 1(BTPx) (21)

The full-state feedback LQR with integral action within the feedforward
pathway connecting the error comparator and the system is depicted in
Fig. 3. In summary of the diagram shown in Fig. 3, r is the desired set-
point, u is the predicted controller input, A, B, and C are matrices rep-
resenting the process model, Kx is the LQR feedback gain matrix and Ki is

Fig. 4. Properties of carbon steel as a function of temperature.

S. Zarghoon et al.
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the integral gain. The addition of integral action to the control system
allows the controller to track the setpoint (instead of relying on the
classical null stabilisation) and, as such ensure a better perturbation
robustness [39]. The aim is to stabilise the controlled system as well as
integrate the steady-state error. However, the integral action can lead to
controller overshoots, therefore to resolve this issue[40], adequate
measures must be taken to optimise the LQR through its weighting

matrices, i.e. Q and R. Adequate design or tuning of these two matrices
are the most important parameters of the LQR which can be tedious and
challenging[41]. To apply the process model to the LQR, its state and
output dynamics are usually expressed as state-space models, Equation
(22) and (23). The state-space model defined by matrices, A, B, and C
can be deduced from the linearisation of the dynamic models, Equation
(9c) and (14). Note that C is a matrix of zeros and ones that defines the
outputs from the states.

ẋ = Ax+Bu (22)

y = Cx (23)

İ = r − y = r − Cx (24)

The resulting error from the system, İ, can be deduced from the differ-
ence between the desired setpoint, r, and output, y, of the system.
Equations (22) and (24), can be used to design a new state-space model
with integral action as given by the state-space matrices, Equation (25),

Fig. 5. Illustration of temperature dynamics for the discretised billet surfaces.

Table 2
Evaluation metric for the comparison of developed model
and data for carbon steel properties.

Carbon steel properties R2

Density,ρ 0.9985
Specific heat capacity,Cp 0.9997
Thermal conductivity, k 0.9998
Emissivity,ε 1.0000
Electrical conductivity,σ 0.9950

Fig. 6. Illustration of the resulting magnetic vector potential from the current density on billet surfaces.

S. Zarghoon et al.
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which can be further simplified into Equation (26).
[
ẋ
İ

]

=

[
A 0

− C 0

][
x
I

]

+

[
B
0

]

u+
[
0
1

]

r (25)

ẋ = AIxI+BIu+Brr (26)

The controller input, u, of the full-state feedback LQR can be expressed
as given in Equation (27). Substituting Equation (27) into (26) yields
Equation (28). The gain matrices of the controller are given as K =

[Kx⋮Ki]. Typically Kx is a single-row matrix whose column size is the
same as the number of state variables, x, i.e. the five temperatures of
each discretised point, Kx = [Kx1, Kx2, Kx3, Kx4, Kx5] and Ki a single
value. Therefore, K = [Kx1, Kx2, Kx3, Kx4, Kx5, Ki].

u = − KxI (27)

ẋ = (AI − KBI)xI +Brr (28)

In the aforementioned equations, the gain matrix, K, can be determined
through the utilisation of the “lqr” function in MATLAB R2021b by
solving the Riccati equation, Equation (19), and the control system is
implemented with SIMULINK R2021b in the same design framework

given by Fig. 3.

4. Results and discussion

4.1. Simulation of induction heating

To simulate the induction heating process, Equations (9c) and (14)
are considered as one-dimensional spatial differential, ∇, along the x-
axis, and discretised into five segments (i.e., Nx = 5), Fig. 1b. The central

difference approximations are used to derive five equations to represent
Equations (9c) and (14) each. These equations are then solved simul-
taneously with Equations (10), (11), and (13). The simulation results,
obtained using the parameters specified in Table 1, and Equations (29) –
(34), are presented in Figs. 4 – 5.

The Equation (29) – (34) shows the temperature dependence (i.e., T
in kelvins, K) of the density, ρ [42,43], specific heat capacity, Cp
[42,44–48], thermal conductivity, k [42–48], emissivity, ε [49], elec-
trical conductivity, σ [50], and relative magnetic permeability, μr
[34,51,52], of carbon steel. The Equations (29) – (33) were curve-fitted
as a function of temperature, using data from the respective highlighted
literature. However, Equation (34) is as reported in literature. The
resulting comparison of the developed models and data is shown in
Fig. 4, with their respective R-squared (R2) evaluation metrics given in
Table 2, and the result showed adequate fit (R2 > 0.95).

ε =

⎧
⎨

⎩

T ≤ 663→0.28
653 ≤ T ≤ 793→
T ≥ 793→0.69

0.6999exp

(

−

(
T − 848.7278
203.6169

)2
)

(32)

μr =
μ
μo

=

⎧
⎪⎨

⎪⎩

T ≤ 1023→ 1+ (μro − 1)
(

1 −

(
T − 273
TC(◦C)

)n )

T ≥ 1023→ 1
(34)

In Fig. 5a, upon the application of source current to the billet surface, Js,
the outermost surface (i.e., Nx5) initially experiences a decrease in
temperature due to radiation heat loss, Equation (15) to the surrounding
air film. This heat loss occurs because of the sharp temperature contrast

ρ
(
kg.m3) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

273 ≤ T ≤ 1673K→7849exp

(

−

(
T − 146.6
4858

)2
)

+ 367.2exp

(

−

(
T − 1914
468

)2
)

1673 ≤ T ≤ 1803K→12420exp( − 0.0003T)

1803 ≤ T ≤ 1973K→7120exp(1.635E − 8T)

(29)

Cp
(
J.kg− 1K− 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

273 ≤ T ≤ 993K→4780exp

(

−

(
T − 996.9
13.39

)2
)

+ 710.2exp

(

−

(
T − 2046
2627

)2
)

993 ≤ T ≤ 1973K→4412exp

(

−

(
T − 990.6
42.22

)2
)

+ 603.7exp

(

−

(
T − 21320
356500

)2
) (30)

k
(
W.m− 1K− 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

273 ≤ T ≤ 1673K→12.13exp

(

−

(
T − 349.3
384.4

)2
)

+ 3.292E+ 15exp

(

−

(
T − 641800
113100

)2
)

1673 ≤ T ≤ 1773K→23.32exp( − 0.0002T) + 1.706E − 13exp(0.0197T)

1773 ≤ T ≤ 1973K→259.7exp(7.473E − 7T)

(31)

σ(S.m− 1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

273 ≤ T ≤ 1773K→5364015.153exp

(

−

(
T − 4977.4071
4746.0594

)2
)

+ 239071.5586exp

(

−

(
T − 781.0628
317.3960

)2
)

1773 ≤ T ≤ 1803K→1.4860exp(0.0074T)

1803 ≤ T ≤ 1973K→2.2269T2 − 8614.6218T + 9202966.681

(33)
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between the billet surface (1000 ℃) and the surrounding air tempera-
ture (35℃). This heat loss takes place even though the skin effect the-
orem predicts that Js should be maximum at Nx5 as such should
experience an instantaneous increase in temperature (i.e., in the absence
of heat loss). Therefore, due to this counteracting effect, after this initial
heat loss, the surface begins to steadily increase in temperature. In
contrast to the observation at the outermost surface, the inner surfaces
(i.e., Nx4 to Nx1) experience an instantaneous increase in temperature.
During the initial phase of heating (≤205 s), the middle surface, Nx3,
experiences the highest heating rate, followed by Nx2 and Nx1. This is
because the skin effect has a greater influence on the Nx3 surface
compared to radiation heat loss. On the other hand, the Nx4 surface
experiences the lowest heating rate due to its proximity to the outer
surface, resulting in more radiation heat loss to the surrounding surface,
Nx5. However, as the heating process continues (>205 s), there is more
heat accumulation toward the core, Nx1, of the billet due to negligible
radiation heat loss to the surroundings. This continues even though,
according to the skin effect theorem, Js decreases towards the core, Nx1.
Consequently, as the heating progresses, when all surfaces reach their
steady-state temperatures at approximately 4400 s, the core tempera-
ture finally reaches the highest temperature. The preceding surface
temperatures follow the order: Nx1(≅ 1259 ◦C) > Nx2(≅ 1258 ◦C) >
Nx3(≅ 1246 ◦C)>Nx4(≅ 1217 ◦C)>Nx5(≅ 1164 ◦C). Considering that
the spatial discretisation of steel billet was linear, i.e., Δx = ϑ/2Nx. It
would have been expected that the spatial distribution of temperature
along the depth of the steel billet should be correspondingly linear. The
results, (Tx1 − Tx2≅ 1◦C, Tx2 − Tx3≅ 12 ◦C, Tx3 − Tx4≅ 29 ◦C,

Tx4 − Tx5≅ 53 ◦C) and Fig. 5a, however shows otherwise. This highly
nonlinear spatial temperature distribution can be attributed to the skin
effect, as well as the nonlinear boundary conditions (i.e., the Dirichlet
boundary condition via radiative heat loss on Nx5, and the Neumann
boundary on Nx1).

Furthermore, Fig. 5b shows a surface plot illustrating the dynamic
changes in temperature across the discretised surfaces as time pro-
gresses. It visually represents how the temperature evolves throughout
the billet. In addition, Fig. 6 showcases the resulting magnetic vector
potential, A , on the billet surfaces. As anticipated, A , decreases towards
the core of the billet, following the influence of the skin effect on Js. This
demonstrates the distribution and behavior of the magnetic field within
the induction heating process.

The results of the simulation of this model thus far conform to those
reported in literature. Luozzo et al.[34] for carbon steel tube, Hansson
and Fisk [35] for stainless steel tube, Jelicic [53] and Baldan [54] for
solid steel billet, all reported similar results that verify the result of this
work. Considering that both radiation and convection heat losses on the
surface were considered, the inner surface also experienced higher
temperatures than the outer surface, as found in this study. However, in
this work, the temperature difference was higher compared to those
reported in literature. The difference can be attributed to the obvious
difference in initial condition (i.e. 1000 ◦C in this work as compared to
about 20 to 35 ◦C for other work), emissivity, as well as the assumption
of convective heat transfer considered. Furthermore Jankowski et al.
[55] although considered a cylindrical steel billet, the trend of the result
also showed similarity with that of this work, even though the spatial

Fig. 8. LQR temperature control for billet core surface based on changes in input weighing matrix.

Fig. 7. LQR temperature control for billet core surface based on changes in state weighing matrix.
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temperature distribution wasn’t considered in their work. Janutienė and
Mažeika [56] however reported higher temperatures on the billet sur-
face than at the core of a solid cylindrical carbon steel billet, contrary to
the result of this work. This discrepancy is a result of negligible heat loss
assumed at the surface, as such due to the prevailing skin effect, the
result is expected for such an assumption.

5. Process control of induction heating

To control the induction heating process, the state-space model
described by Equation (22) – (28) is utilised. To deduce the A and B
matrices required for this purpose, the dynamic models, Equations (9c)
and (14) in conjunction with Equations (10), (11), and (13) are line-
arised using Taylor’s series or Jacobian linearisation theorem, as
extensively described in literature [11]. The value of Jso given in Table 1
was used as the steady-state value of the maximum current density, Jso,
for the linearisation process, along with the preliminary steady-state
temperature values of surfaces Nx1 to Nx5 i.e., T1=1259 ◦C,T2 =

1258 ◦C, T3=1246 ◦C, T4=1217 ◦C andT5 = 1164 ◦C. These temperature
values are used for the preliminary calculation of carbon steel properties
as highlighted in Equation (29) – (34). The resulting matrices obtained
from the linearisation process are given by Equation (35), with the
corresponding output matrix, C = [1 0 0 0 0 ], and potentially the
disturbance or direct transmission matrix, D= 0. The typical application
of the matrices A, B, and C to the state-space model, Equation (22) –
(23), is given in Equation (30b).

To verify the earlier assumption of system stability, the open-loop
stability of the induction heating system was evaluated based on the
eigenvalues, λ, obtained from the determinant of the matrix A and its
identity matrix, I, i.e, |A − λI|= 0. The system stability is confirmed if all
eigenvalues have negative real parts, i.e., λ < 0. The resulting eigen-
values (− 0.0017, − 0.0308, − 0.0954, − 0.1850, − 0.1599) affirm the
system is stable. With the matrices A and B determined, and stability
confirmed, the LQR control system can be designed. The resulting AI,
and BI matrices are given by Equation (38), with the previously specified
matrix, Br=[ 0 1 ]T. The LQR, irrespective of the specific values
assigned to the Q and R parameters, serves as design elements to
penalise both the state variables and the control signals [57,58]. In this
study, the Q and R matrices were tested under two case studies. In case-
study-1, R was kept constant while Q was varied, and in case-study-2, Q
was kept constant while Rwas assigned different values. The objective of
these case studies was to evaluate the system’s output when attempting
to reach a setpoint of 1200℃ at the core of the billet.

In case-study-1, the following values of Q and R matrices were
respectively applied, i.e., Q1 = diag (1,1,1,1,1,100), Q2 = diag
(1,1,1,1,1,150), Q3 = diag (1,1,1,1,1,200), Q4 = diag (1,1,1,1,1,300),
and Q5 = diag (1,1,1,1,1,350), Q6 = diag (1,1,1,1,1,600) as well as R =

2, i.e., the Rmatrix is kept constant. Fig. 7a illustrates the response of the
system upon the implementation of a full-state feedback LQR, with the

resulting gain matrices given by Equation (39). The observed behaviour
indicates that as the value of Q increases, the system approaches the
setpoint with minimal overshoot and an impressive settling time both
before and after the occurrence of disturbance. Generally, in a control
system, a faster controller response or settling time to reach the setpoint
is desirable, while overshoot is considered undesirable. Among the
tested values of Q, Q3 demonstrates the best performance as it results in
minimal overshoot and an adequate settling time. Increasing the value
of Q generally leads to faster settling time but at the expense of higher
overshooting due to the initial overreaction of the controller [59], which
may have resulted in or amplified by the integral action added to the
LQR. This can be observed in the response of Q6 (i.e., the highest Q
value), which achieves the fastest settling time but with the highest
overshoot, while Q1 (i.e., the lowest Q value) exhibits the opposite
behaviour. Overall, the controller proves to be effective even in the
presence of disturbance at 4000 s, as the system quickly returns to its
setpoint. The resulting maximum current density, Jso, for achieving
temperature control of the billet core surface is depicted in Fig. 7b.

A =

⎡

⎢
⎢
⎢
⎢
⎣

− 0.0908 0.0908 0.0000 0.0000 0.0000
0.0454 − 0.0908 0.0454 0.0000 0.0000
0.0000 0.0455 − 0.0909 0.0455 0.0000
0.0000 0.0000 0.0456 − 0.0911 0.0456
0.0000 0.0000 0.0000 0.0915 − 0.1091

⎤

⎥
⎥
⎥
⎥
⎦
&B

=

⎡

⎢
⎢
⎢
⎢
⎣

5.1363E − 8
1.7614E − 7
3.2884E − 7
4.6366E − 7
5.3544E − 7

⎤

⎥
⎥
⎥
⎥
⎦

(35)

ẋ =

⎡

⎢
⎢
⎢
⎢
⎣

dT1/dt
dT2/dt
dT3/dt
dT4/dt
dT5/dt

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

− 0.0908 0.0908 0.0000 0.0000 0.0000
0.0454 − 0.0908 0.0454 0.0000 0.0000
0.0000 0.0455 − 0.0909 0.0455 0.0000
0.0000 0.0000 0.0456 − 0.0911 0.0456
0.0000 0.0000 0.0000 0.0915 − 0.1091

⎤

⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
A

⎡

⎢
⎢
⎢
⎢
⎣

T1
T2
T3
T4
T5

⎤

⎥
⎥
⎥
⎥
⎦

⏟̅̅̅⏞⏞̅̅̅⏟
x

+

⎡

⎢
⎢
⎢
⎢
⎣

5.1363E − 8
1.7614E − 7
3.2884E − 7
4.6366E − 7
5.3544E − 7

⎤

⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
B

q
⏟⏞⏞⏟
u

(36)

Fig. 9. LQR temperature control for billet core surface based on specific state and input weighing matrix.
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y = [1 0 0 0 0 ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

c

⎡

⎢
⎢
⎢
⎢
⎣

T1
T2
T3
T4
T5

⎤

⎥
⎥
⎥
⎥
⎦

⏟̅̅̅⏞⏞̅̅̅⏟
x

(37)

AI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 0.0908 0.0908 0.0000 0.0000 0.0000 0.0000
0.0454 − 0.0908 0.0454 0.0000 0.0000 0.0000
0.0000 0.0455 − 0.0909 0.0455 0.0000 0.0000
0.0000 0.0000 0.0456 − 0.0911 0.0456 0.0000
0.0000 0.0000 0.0000 0.0915 − 0.1091 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 − 0.0000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

&BI

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.1363E − 8
1.7614E − 7
3.2884E − 7
4.6366E − 7
5.3544E − 7
0.0000E − 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(38)

Kx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

580.8557 1011.1143 870.0602 737.7150 306.6409
689.4398 1195.2907 1025.0733 867.1021 360.1084
777.2164 1343.1783 1148.8131 969.9463 402.5390
918.0137 1578.6178 1344.4972 1131.7929 469.1886
977.2987 1677.1219 1425.8994 1198.8341 496.7519
1212.7711 2064.8659 1743.7142 1458.9858 603.4598

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

&KI

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 7.0711
− 8.6603
− 10.0000
− 12.2474
− 13.2288
− 17.3205

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(39)

Note that the procedure by which the matrices A, and B, Equation
(35) are applied to the state-space model as given by Equation (36), can
also be utilised for matrices AI and BI to Equation (26) or AI, BI, Kx and KI
to Equation (28).

In case-study-2, the following values of Q and R matrices were
respectively applied, i.e., R1 = 1.6, R2 = 1.3, R3 = 0.9, R4 = 0.6, and R5
= 0.2, R6 = 0.09 as well as Q = diag (1,1,1,1,1,100), i.e., the Q matrix is
kept constant. Fig. 8a depicts the system’s response, with changes in the
value of R, with resulting gain matrices given by Equation (40). It can be
observed that as the value of R decreases, the settling time of the
controller becomes shorter [59]. However, it can also lead to an unac-
ceptable overshoot due to the overreaction of the controller, which may
have resulted from the integral action incorporated into the LQR. Among
the tested values of R, R3 demonstrates the best performance by opti-
mising the settling time and mitigating overshoot. R1 results in the
fastest settling time but with the worst overshoot, while R6 leads to the
slowest settling time but negligible overshoot, contributing to system
stabilisation by ensuring that the control signals remain within the
allowed range. The resulting controller input, i.e., maximum current
density, Jso, is illustrated in Fig. 8b. As earlier observed for case-study-2,
the controller is also effective in countering the application of
disturbance.

Furthermore, by comparing the effect of the state, Q, and input, R,
weighing matrices on the control system, it can be observed from Fig. 7a
and 8a that the variation of R has a more significant effect on the
response of the controller, resulting in a shorter settling time but higher
overshoot, compared to the variation of Q. This observation suggests
that R, being the input weighing matrix responsible for the actuator
signal, plays a crucial role in manipulating the system’s response. In
general, a larger values of R prioritises system stability with less energy,

known as an expensive control strategy. On the other hand, a smaller R
value implies a cheaper control strategy that minimises penalties on
control signals. Similarly, a larger Q value aims to stabilise the system
with minimal changes in state variables. By keeping Q constant and
adjusting R, a trade-off can be achieved between penalising control
effort and maintaining system stability.

The result of controlling the billet core temperature at specific, Q =

diag (1,1,1,1,1,100), and input, R= 1.6, values that ensure minimisation
of the controller settling time as well as its overshoot are shown in
Fig. 9a, with the resulting reaction of other surfaces. The controller input
for this case is also given in Fig. 9b. Note that Kx = [638.5362 1109.1227
952.6764 806.7499 335.1805] and KI = [− 7.9057] are the deduced
gain matrices. These gain matrices obtained from the optimised
weighing matrices, Q and R ensure the limitation of the effect of
controller overshoot that may have resulted from the addition of integral
gain to the LQR.

In summary, the designed LQR controller demonstrated effectiveness
in controlling the billet core surface to the desired setpoint, even when
subjected to disturbances, under different state weighing matrices, Q,
and input weighing matrices, R. The controller’s performance was
evaluated based on settling time, overshoot, and system stability. The
results showed that appropriate tuning of the Q and R matrices allowed
for achieving desired control objectives while maintaining system sta-
bility. The controller proved to be robust in mitigating disturbances and
maintaining accurate temperature control of the billet core surface.
Therefore based on the controller performance in terms of being able to
attain the desired setpoint, in comparison to reports in literature for
similar linear control of the sort reported in this work[21,27], the
controller performance is tentatively verified.

Kx =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

638.5362 1109.1227 952.6764 806.7499 335.1805
696.7900 1207.7080 1035.4879 875.7730 363.6881
811.7970 1401.2032 1197.18859 1010.0469 419.0669
958.1718 1645.3817 1399.69979 1177.2748 487.8909
1482.2999 2502.2650 2097.4073 1745.5448 720.5310
2015.4552 3349.4676 2768.8259 2281.0556 937.9592

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

&KI

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 7.9057
− 8.7706
− 10.5409
− 12.9099
− 22.3607
− 33.3333

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(40)

6. Conclusion

In conclusion, this study successfully modelled the induction heating
process of a rectangular carbon steel billet, taking into account the skin
effect phenomenon. One-dimensional spatial partial differential equa-
tions (PDEs) were employed, and a semi-numerical method was utilised
to solve the model. The space differential was approximated using
central difference approximations, leading to the discretisation of the
billet into five surfaces and yielding sets of ordinary differential equa-
tions. The simulation results accurately demonstrated the expected dy-
namic behaviour of the process, particularly the interaction between the
skin effect and heat losses from the billet.

After establishing the adequacy of the model through the simulation
of the induction heating process, the model was converted into a state-
space representation by linearising it at a specified maximum current
density, Jso = 50 × 105 A.m− 2 with preliminary steady-state tempera-
ture values of the billet surfaces: T1=1320 ◦C, T2=1319 ◦C, T3=1303 ◦C,
T4=1259 ◦C and T5 = 1181 ◦C. The resulting state-space model served as
the foundation for developing a full-state feedback linear quadratic
regulator (LQR) controller with integral action to regulate the temper-
ature of the billet core. Once the controller was developed, two case
studies were conducted to evaluate its performance, taking into account
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the simultaneous application of disturbances.
In case-study-1, the input weighing matrix, R, was kept constant,

while the state weighing matrix, Q, was varied. Conversely, in case-
study-2, there was a contradictory adjustment where R and Q were
interchanged. Generally, it was observed that increasing Q and
decreasing R led to a faster response of the controller in reaching the
setpoint. However, this faster response came at the expense of increased
overshooting, with the magnitude of the overshoot being determined by
the controller’s speed of operation. It is important to note that R, as the
input weighing matrix responsible for the actuator signal, had a more
significant impact on the controller’s response compared to Q. In
conclusion, the designed controller proved to be effective in regulating
the temperature of the billet core surface, even in the presence of
disturbances.
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