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Abstract: This research investigates the micro-mechanical and tribological properties of injection-
molded parts made from polypropylene. The tribological properties of polymers are a very interesting
area of research. Understanding tribological processes is very crucial. Considering that the mechanical
and tribological properties of injected parts are not uniform at various points of the part, this research
was conducted to explain the non-homogeneity of properties along the flow path. Non-homogeneity
can be influenced by numerous factors, including distance from the gate, mold and melt temperature,
injection pressure, crystalline structure, cooling rate, the surface of the mold, and others. The key
factor from the micro-mechanical and tribological properties point of view is the polymer morphology
(degree of crystallinity and size of the skin and core layers). The morphology is influenced by polymer
flow and the injection molding process conditions. Gained results indicate that the indentation
method was sufficiently sensitive to capture the changes in polypropylene morphology, which is a
key parameter for the resulting micro-mechanical and tribological properties of the part. It was proven
that the mechanical and tribological properties are not equal in varying regions of the part. Due to
cooling and process parameters, the difference in the indentation modulus in individual measurement
points was up to 55%, and the tribological properties, in particular the friction coefficient, showed
a difference of up to 20%. The aforementioned results indicate the impact this finding signifies for
injection molding technology in technical practice. Tribological properties are a key property of
the part surface and, together with micro-mechanical properties, characterize the resistance of the
surface to mechanical failure of the plastic part when used in engineering applications. A suitable
choice of gate location, finishing method of the cavity surface, and process parameters can ensure
the improvement of mechanical and tribological properties in stressed regions of the part. This will
increase the stiffness and wear resistance of the surface.

Keywords: polypropylene; gate distance; micro-mechanical properties; tribological properties;
structure; crystallinity; surface quality

1. Introduction

Injection molding is one of the most commonly used manufacturing methods to
produce polymer parts. It is characterized by a high degree of automation, high productivity,
and good volumetric stability of injected parts. The polymer is exposed to thermal and
mechanical effects during the injection molding cycle. The polymer experiences a transition
from a molten state to a rubber, glass, or crystalline state. The final physical, optical, and
mechanical properties of the injected part closely correlate with the created micro-structure.

During the melting phase of the injection molding process, the polymer experiences
high shear stress, normal pressure, and a thermal gradient. The high pressure at the wall
leads to the creation of a highly oriented lamellar micro-structure, commonly called the
skin layer. On the other hand, the low pressure in the core leads to the creation of a
spherulitic micro-structure. This difference in morphology between the surface and core
has already been investigated in numerous works [1–6]. This phenomenon is commonly
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called skin–core morphology, which can be observed by a polarized optical microscope
(Figure 1). Injection-molded semi-crystalline parts generally contain 2–5 layers [7–9].
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Figure 1. Morphological structure: (a) scheme of skin–core structure; (b) optical microscope—skin–
core structure.

Crystal growth occurs at temperatures below the melting point (Tm) and above the
glass transition point (Tg). Higher temperatures interfere with the molecular arrangement,
while lower temperatures lead to the freezing of molecular chains’ movement. Secondary
crystallization can occur under Tg, although in the time scale of months and years. This
process influences the mechanical properties of polymers and decreases their volume due
to the more compact arrangement of polymer chains [10,11].

The growth of crystalline regions occurs in the direction of the biggest temperature
gradient. In the case of a strong gradient, this growth is unidirectional and has a dendritic
character. If the temperature distribution is isotropic and static, then the lamellae grow radially
and create bigger quasi-spherical aggregates called spherulites. Spherulites’ size ranges from
1 to 100 µm [10]. During observation by a polarized optical microscope, spherulites create a
great number of colored figures, including the typical Maltese cross [10–12].

The crystallization mechanism of the polymer melt is quite important for the injection
molding of plastic parts. Different types of crystallization occur, for example, in extrusion
during the production of fibers and films. The crystallization theory indicates that the
thickness of lamellae is always less than the expected length of molecules. This means that
molecules in crystals can be folded numerous times. During crystallization, only a part of
the melt is deposited in the crystalline phase, while the remainder freezes in the amorphous
phase, which envelops the crystalline regions. A common polyolefin is a semi-crystalline
material with a relatively complex interior structure [10].

The problem of crystallization during injection molding was investigated by Le
et al. [13], who focused on the influence of pressure on crystallization kinetics. The detected
change in crystallization temperature enabled the identification of the pressure dependence
of crystallization kinetic parameters Tm and Tg, which are used in the Hoffman–Lauritzen
equation. Crystallization is the ability of a material to create rigid structures, which give
the material its specific properties.

Liu et al. [14] compared the morphology of iPP samples prepared by conventional
injection molding and micro-injection molding. The samples were studied using PLM, SEM,
DSC, and WAXD. The results showed that micro-injected samples contained a much higher
percentage of oriented shear layers. Varying crystallization in different points of the injected
part was investigated by Sun et al. [15] and Pantani et al. [16], who focused on the creation
of skin–core structure in the injected parts. The change in polypropylene morphology is
described by the arrangement and size of spherulites in dependence on distance from the
wall. The problem of crystallization was researched by more authors [17,18].

The correct setting of injection molding process parameters is a key factor not only for
the stable manufacturing process but also for the expected final properties of injected parts.
The most important parameters that significantly influence the entire injection molding
process are injection speed, injection pressure, holding pressure, duration of holding
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pressure, melt temperature, and mold temperature. The individual process parameters
act simultaneously and influence each other. Therefore, a change to one parameter affects
other parameters [1].

Furthermore, the influence of process parameters on the mechanical properties of the
injected part has been studied in numerous other publications. Wang et al. [19] focused on
the effect of process parameters (especially injection speed) on the mechanical properties
of micro-injected PP samples. It was found that increasing injection speed led to higher
hardness, which increased more in the perpendicular direction of flow than in the flow
direction. A similar study was conducted by Glogowska et al. [20], who injected samples
with differing process conditions. The samples were then grinded, injected again, and their
mechanical properties measured. Sykutera et al. [21] investigated the influence of process
conditions on the polymer viscosity, which was measured directly in the cavity. In general
practice, viscosity is measured in rheometers, but the goal of this study was to provide
real values coming straight from the manufacturing process. Studies [22–25] dealt with the
effect of multiple process conditions (pressure and temperature) on final flow length.

In conclusion, the submitted study focuses on the influence of flow length (distance
from the gate) and process conditions on the creation of crystalline morphology (skin–
core structure). The final structure affects the micro-mechanical properties of the surface
layer of injection-molded polypropylene. The literary research on the problem of the
influence of distance from the gate on the mechanical properties of injection-molded parts
was conducted, and no existing publication concerning this topic was found. In most
cases, the mechanical properties and sometimes hardness were measured only locally
and subsequently taken as results for the overall part. However, there was no study that
investigated the problem of varying properties along the polymer flow path of injection-
molded products. The aforementioned studies were concerned with partial research, mainly
with the influence of process parameters in injection molding on mechanical properties and
the effect of tool quality on flow length and surface replication. Furthermore, other studies
focused on changes in crystallinity, but once again, mostly locally. Some investigated
properties were researched only for micro-injection molding, which is quite different from
regular molding. In the field of micro-injection molding, several studies were concerned
with the influence of surface roughness on the flow length of the polymer. The results of
some studies were similar to macro-injection molding, although the dimensions of the final
part were in the range of micrometers; thus, the effect of surface roughness on polymer
flow was much greater. These results cannot be directly applied to those of macro-injection
molding due to the significant difference in size. As the mechanical properties of injection-
molded products are not uniform along the flow length, this research was designed to
specifically target the non-homogeneity of the properties of injection-molded parts. This
non-homogeneity can be influenced by numerous factors, for example, the distance from
the gate, the temperature of the mold and melt, injection pressure, crystalline structure,
degree of cooling, the surface of the mold, and others. This problem has a significant effect
on injection molding in general practice.

2. Materials and Methods

The preparation of the experiment was inspired by the practical requirements of
manufacturing injection-molded technical parts. Individual designs were checked by
injection molding simulation. Information gained from the simulation was used to choose
the most suitable technological parameters.

2.1. Injection-Molded Material (Polypropylene)

This research, as well as the selection of material (polypropylene), is inspired by
general practice requirements, as polypropylene is commonly used for injection molding
of technical parts. The testing was conducted on polypropylene, which is a semi-crystalline
thermoplastic with the trade name Borealis BJ380MO provided by Borealis (Linz, Austria).
The selected material is commonly used in the automotive industry, from which the request
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for testing properties along the flow length originated. Polypropylene is nowadays being
pushed out by more expensive construction materials. On the other hand, polypropylene is
still quite useful, especially due to its wide range of applications and processing parameters.
The material properties were taken from the provided material sheet, as can be seen in
Table 1.

Table 1. Basic properties of injection-molded material.

Properties Unit Value

MFI g/10 min 80
Density kg/m3 905

Elastic modulus GPa 1.3
Melt temperature ◦C 210–260
Mold temperature ◦C 20–60
Holding pressure MPa Min. 20

2.2. Injection Molding

The test samples were prepared using the injection molding machine Allrounder
470 E 1000-290 Golden Edition, manufactured by Arburg (Losburg, Germany). The mold
tempering was conducted by the oil tempering unit Regloplas 150 Smart, manufactured by
Regloplas (St. Gallen, Switzerland). The process conditions were set based on values gained
from the injection molding simulation and material sheet (Table 2). The test samples were
manufactured as rectangular blocks with dimensions of 6 × 1 × 240 mm. The selection of
injection molding parameters for this research is once again based on the requirements of
industrial practice. This research is only a part of extensive work regarding the problem of
the polymer flow path and its final properties. The chosen injection molding parameters for
this research were taken closer to the lower boundary of recommended parameters given
by the manufacturer with regards to the economic perspective of the length of the injection
molding cycle (melt temperature 215 ◦C, mold temperature 30 ◦C). The recommended melt
temperature range is 215–255 ◦C, and the mold temperature is 30–50 ◦C.

Table 2. Technological parameters of the injection molding process.

Technological Parameters Unit Value

Injection pressure bar 800
Holding pressure bar 640

Holding pressure duration s 1
Cooling time s 20

Clamping force kN 1000
Mold temperature ◦C 30
Melt temperature ◦C 215

Screw zone 1 ◦C 215
Screw zone 2 ◦C 210
Screw zone 3 ◦C 205
Screw zone 4 ◦C 200
Screw zone 5 ◦C 200

The cavity of the testing injection mold was in the shape of four grooves with varying
lengths, which were determined according to previously conducted injection molding
analysis that focused on the estimation of process parameters that could lead to the complete
filling of the mold. The length of individual cavities was 208 mm, 158 mm, 68 mm, and
38 mm (Figure 2a). The cavity had a rectangular cross-section with a dimension of 6 × 1 mm
and a length of 208 mm (Figure 2b). The connectivity of the cavity with the runner was
ensured by a cold slug, which was rotated by 90◦ for each length. The shape plates
were changeable and fit into a universal frame. These plates were tempered through
drilled channels.
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The cavity of the injection mold was manufactured by fine milling, as the required
quality of the surface was in the range of Ra 1.6 µm to Ra 2.2 µm. The conditions of the
manufacturing were set according to the requirements.

2.3. Injection Molding Simulation

The injection molding simulation was performed in order to provide data that could
be compared with real results and to help with the setting of the process parameters. The
simulation was performed in MoldFlow Synergy, which was made by Autodesk (San
Rafael, CA, USA). The conditions were set according to the material sheet in a way that
closely resembled conditions during injection molding.

The material for simulation was selected from the software database, which offers the
same type of polypropylene (Borealis BJ380MO) that was used to produce the injection-
molded specimens. The parameters of the selected material can be seen in Table 3.

Table 3. Basic properties of polypropylene (Borealis BJ380MO).

Properties Unit Value

MFI g/10 min 80
Density kg/m3 900

Elastic modulus GPa 1.3
Melt temperature ◦C 210–260
Mold temperature ◦C 20–60

Ejection temperature ◦C 117

The imported model was hatched by a 3D network made of 4-sided bodies (Figure 3),
which provided an adequate representation of the part in its entire volume and subsequent
display of results throughout the entire thickness of the part. The gate was made in the
form of a conical sprue. The generated 3D network was subsequently checked for all
requirements, and then the simulation was conducted (Table 4).
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Table 4. Properties of mesh.

Properties Unit Value

Mesh type - Tetrahedral
Global edge length on surface mm 1

Entity counts - 111,686
Aspect ratio - 4.61

Figure 4 displays the tempering system and the mold block. The trajectory of temper-
ing channels, including the inlet and outlet of the tempering medium, is derived from the
real mold concept. The core, cavity, and other mold plates were simplified as blocks for the
sake of simulation. Geometry defined in this way was subsequently also hatched by a 3D
network and then checked. After this step, it was necessary to set all other conditions of
the simulation, which can be seen in Table 5.
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Table 5. Process settings for simulation.

Properties Unit Value

Molding material - Borealis BJ380MO
Mold material - Tool steel P-20 (1.2311)

Injection molding machine - Allrounder 470e 143 tons 16.4 oz
Melt temperature ◦C 215

Ejection temperature ◦C 117
Cycle time s 30

Mold temperature ◦C 30
Coolant - oil

Flow rate lit/min 50

After the simulation was started, all necessary calculations ran according to pre-
set conditions. The complex Moldflow analyses provided numerous important results
that were significant for the visualization of events taking place in individual phases
of the manufacturing cycle and allowed the evaluation of qualitative parameters of the
product. The goal of the simulations was to analyze the time of filling, injection pressure,
and orientation in the skin–core layer. The results of these analyses provide important
information for the stabilization of the injection molding process and the prediction of
polymer behavior in the cavity.

2.4. Tribological Properties

Tribological properties were measured using the MicroCombi tester MCT3 from Anton
Paar (Graz, Austria). The measurements were carried out using the micro-indentation test,
which allows the coefficient of friction and abrasion resistance of the tested surfaces to be
determined. The principle of this measurement is based on the straightforward movement
of the indentor (Rockwell cone) with a tip angle of 120◦ and a tip radius of 100 µm along
the surface of the test specimen. The process parameters can be seen in Table 6. Tribological
properties were measured on a MicroCombi tester, which was also used in the works of
other authors [26,27].

Table 6. Measurement parameters for tribological properties.

Measurement Parameters Unit Value

Applied load N 1
Speed mm/min 10
Length mm 5

Acquisition Rate Hz 30

Ahead of the process, the indentor moves along the surface with a defined force to
initiate the measurement device. Following the initiation, the indentor penetrates the test
sample with normal force Fn, which leads to material deformation and the creation of
an imprint. The sensors record the friction force Ft, which is proportional to the normal
force, and a so-called pre-scan, which is concerned with the surface profile of the test
sample before the penetration depth Pd (penetration depth) and post-scan of the imprint
Rd (residual depth), which are important for polymer relaxation evaluation. Valuable
information about the tribological properties of the material can be obtained from the
difference in profile depths (Pd − Rd). Finally, the critical loads can be accurately measured
using the acoustic emission AE and friction coefficient µ. Figure 5 shows a schematic
diagram of the micro-tribometer.
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2.5. Micro-Mechanical Properties

The micro-mechanical properties measurement was conducted by depth sensing inden-
tation (DSI) on a Micro-Combi tester (MCT3) manufactured by Anton Paar (Graz, Austria).

A four-sided diamond pyramid with a top angle of 136◦ (Vickers indentor) was used
as the indenting body. The measurement was conducted by the DSI method (depth sensing
indentation), and the data gained were evaluated by the Oliver and Pharr method. The
measurement was conducted according to the ČSN EN ISO 14577 standard [28]. Two
loading forces were used to observe the changes in the structure (skin–core layer). The use
of loading force 1 N led to a 20 µm depth of indentation, while the application of 5 N led to
a 100 µm depth of penetration. The measurement parameters can be seen in Table 7. Since
it was a micro-hardness measurement, which works with low indenting force with depth
in the range of µm, the only evaluated parameters were indentation hardness, indentation
modulus, and indentation creep.

Table 7. Parameters of mechanical property measurement.

Measurement Parameters Unit Measurement of Skin Layer Measurement of Skin + Core Layer

Applied load N 1 5
Maximum load duration s 90 90

Loading and de-loading speed N/min 2 10
Poisson’s ratio - 0.4 0.4

In order to determine mechanical properties and structure changes at varying distances
from the surface, the test samples were cut, fixed in resin, and polished. The test samples
prepared in this way can be measured in a direction perpendicular to the surface. Individual
cuts were conducted in five sections evenly distributed along the flow direction (gate
location 0 mm, and then 79 mm, 158 mm, 198 mm, and 220 mm from the gate).

As described in the ISO 14577 standard [28], the following parameters were evaluated:
indentation hardness, modulus, and creep. The calculation of the individual values has
been carried out using the Oliver and Pharr method (Figure 6).
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Figure 6. Schematic representation of the indentation processes shows the decrease in indentation
depth during loading (according to Oliver and Pharr).

Indentation hardness (HIT) can be defined as the ability of a material to resist plastic
deformation. Indentation hardness HIT (Equation (1)) is expressed by the ratio between
the applied load Fmax and the contact area (Ap) between the indenter and the specimen at
the maximum depth and load. The contact area Ap (Equation (2)) is specified by the shape
constant of the indentor (24.50 for the Vickers indenter) and the depth of contact of the
indentor with the test specimen hc [29,30].

HIT =
Fmax

Ap
(1)

Ap = 24.50·h2
c (2)

Another material property that can be obtained from indentation testing using the
DSI method is the indentation modulus EIT (Equation (3)). The indentation modulus EIT is
comparable with Young’s modulus of the material. In general, the indentation modulus
can be determined from the slope of the tangent line used to calculate the indentation
hardness HIT. As described in the ISO 14577 standard, the reduced modulus, Er, is used
to account for the fact that the elastic displacements occur in both the indenter and the
sample. The instrumented elastic modulus in the test material, EIT, can be calculated from
Er (Equation (5)). The calculations involve Poisson’s ratio (vs), which is usually between
0.2 and 0.4 for metallic materials and 0.3 and 0.4 for polymeric materials [29,30].

The plane strain modulus E* is calculated from the following Equation (4), where Ei is
the elastic modulus of the indenter (diamond 1141 GPa), Er is the reduced modulus of the
indentation contact, and vi is Poisson’s ratio of the indenter (0.07) [29,30].

Reduced modulus Er is calculated from the following Equation (5), where C is contact
pliability and Ap is contact area,

√
Ap = 4.950 ∗ hc for the Vickers indentor [29,30].

EIT = E∗·
(

1 − v2
s

)
(3)

E∗ =
1

1
Er

− 1−v2
i

Ei

(4)

Er =

√
π

2·C
√

Ap
(5)

Indentation creep is defined as the relative change in the indentation depth while
the applied load is kept constant. It is defined in the ISO 14577 instrumented indentation
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standard as CIT (Equation (6)), where h1 is the depth at the beginning of the creep test, and
h2 is the depth at the end of the creep test [29,30].

CIT =
h2 − h1

h1
100 (6)

2.6. Differential Scanning Calorimetry (DSC)

The behavior of the tested samples during melting and solidification was observed by
the differential scanning calorimeter DSC Q20 (TA Instruments, New Castle, DE, USA). The
weight of the sample was 6 mg, which was prepared by a microtome device. The speed
of heating and cooling was set to 10 ◦C/min. The DSC measurement was divided into
two parts. The first part contained primary heating from T0 to T1, followed by staying
at constant temperature (isotherm 1 min), cooling to T0, staying at constant temperature
(isotherm 1 min), and heating to T1. The observed properties were evaluated during the
first heating phase. The first phase of heating was observed in order to determine the
changes induced by the previous processing of the material (injection molding). The first
phase of heating allowed the observation of the history of polypropylene’s processing
and its influence on the structure and macromolecules, while the second phase no longer
showed this history.

Polypropylene Borealis BJ380MO is not 100% crystalline; its crystallinity is around
44%, as reported by the authors in the [31] article. The crystallinity must be recalculated
according to Formula (7). Crystallinity was calculated from the heat flow by the follow-
ing equation:

Xc =
∆Hm

∆H100
m

× 100 (7)

where Xc is crystallinity (%), ∆Hm is heat flow (J/g), and ∆Hm
100 is heat flow for 100%

crystalline polypropylene (207 J/g), which was found in the literature [32].
The process parameters of the DSC test for the determination of the crystallinity

of polypropylene were set according to previously conducted studies [32–36]. The au-
thors of these publications used DSC to determine the crystallinity of polypropylene and
demonstrated the use of this method to find the crystallinity with sufficient sensitivity.

2.7. Polarized Optical Microscope

Tested samples were cut into slices with a 20 µm thickness in the transverse direction
on a rotational microtome Leica RM 2255 (Deer Park, IL, USA). These cuts were examined
by a polarized optical microscope, which helped in determining the changes in structure
along the cross-section of the tested material.

3. Results

The goal of the experimental work was to find the influence of gate distance on ob-
served parameters such as micro-mechanical properties (indentation hardness, indentation
modulus, and indentation creep) and morphology. These properties were measured on the
surface layer.

3.1. Injection Molding Simulation

The process conditions were set according to the MoldFlow analysis. Figure 7 shows
the results of filling time (Figure 7a), injection pressure (Figure 7b), and skin–core structure
(Figure 7c,d) for plate-shaped samples. The results were used not only to set the process
parameters of injection molding on the machine itself but also to show the behavior of the
polymer in the cavity and predict the orientation created in the skin and core layers. As
can be seen in the results of layer orientation, a highly oriented layer was created in the
surface layer, while an un-oriented structure was created in the core. This orientation of the
skin–core layer has a significant effect on final properties, which can be seen in the results.
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The orientation of the skin result (Figure 7d) provides a good indication of how
molecules will be oriented on the outside of the part, showing the average principal
alignment direction for the whole local area at the end of the filling. The magnitudes of
these vectors are normalized to one and are displayed multiplied by the given scale factor.
Skin orientation is determined by the velocity direction when the melt front first reaches a
given location. The orientation of the skin result is useful for estimating the mechanical
properties of a part. For example, the impact strength is typically much higher in the
direction of molecular orientation at the skin. The skin orientation generally represents the
direction of strength. For plastic parts that must withstand high impact or force, the gate
location can be designed to give a skin orientation in the direction of the impact or force.

The orientation at the core result (Figure 7c) provides a good indication of how
molecules will be oriented at the part core, showing the average principal alignment direc-
tion for the whole element. The core orientation for each triangular element is perpendicular
to the velocity vector before the center layer reaches the transition temperature. This is the
most probable orientation in the core region of a part. The other possible orientation is in
the direction of the velocity vector. Core fiber orientation may be different from skin fiber
orientation. Because the melt freezes very quickly when it contacts the mold for the first
time, the velocity vector provides the most probable molecular orientation at the skin.
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3.2. Tribological Properties

Using the scratch test, it is possible to examine the tribological properties of the surface
layer of the tested injection-molded polypropylene, such as frictional force (Figure 8a),
acoustic emission (Figure 8b), friction coefficient (Figure 8c), and surface profile after
indentation (Figure 8d). The tribological properties were examined at five locations, which
were specified at different distances from the point of the injection gate to the end of the part.
The measured distance X was determined to be 5 mm for all samples. These tests can help
with the prediction of surface resistance to abrasion and thus complement measurements
of micro-mechanical properties such as hardness, modulus, etc.
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The results of tribological tests show that the highest values of observed properties,
e.g., friction force and friction coefficient, were found at a distance of 154 mm. Acoustic
emission showed similar values for all measured distances. On the contrary, observed
tribological properties improved at the gate (0 mm) and at 208 mm from the gate, where the
lowest values of tribological properties were measured. For example, the friction coefficient
showed a value of 0.27 at a distance of 0 mm (start of the part), 0.30 at a distance of 154 mm
(center of the part), and 0.25 at a distance of 208 mm (end of the part). The difference in the
coefficient of friction between the individual points of the part was up to 20%.

As the results show, the tribological properties of injection-molded PP are not homo-
geneous along the length of the part, but due to different flow conditions, the tribological
properties change, which is reflected in an increase in the wear resistance of the surface
layer. This enhancement was caused by structural changes that directly impacted micro-
mechanical properties.
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3.3. Micro-Mechanical Properties of Surface Layer

This part was focused on the observation of micro-mechanical properties (indentation
hardness, indentation modulus, and indentation creep) in the surface layer at various
distances from the gate. The depth of mechanical property measurement reached approx-
imately 20 µm (Figure 9a,c,e). The structures and micro-mechanical properties deeper
in the test samples were measured with a loading force of 5 N, which penetrated up to
100 µm (Figure 9b,d,f). This measurement was supplemented by morphology (crystallinity)
observations and the thickness of the skin layer.

The test samples prepared by injection molding demonstrated that distance from the
gate significantly affects mechanical properties, such as indentation hardness and modulus.
The hardness decreased with distance from the gate, up until the measurement point
located at 154 mm. The total decrease was 15%. Further measurement points demonstrated
the opposite trend, and the values measured at the end of the sample were 17% higher than
at the gate and 34% higher than at the middle (154 mm) (Figure 9a).

The indentation modulus (Figure 9c) characterizes the rigidity of the part, and it can
be determined from the de-loading phase of the indentation cycle. The reported results
(20 µm) of the indentation modulus display similar tendencies to indentation hardness.
When compared, the modulus values measured at the end of the sample were 24% higher
than at the gate. On the other hand, the indentation modulus measured in the middle of
the sample was 55% smaller than at the gate.

Indentation creep is another important property of the polymer part, as it characterizes
the resistance of the material against long-term strain. Most polymer parts are used in
applications that are exposed to continuous and long-term strain. The results of indentation
creep show that flow path and flow length have a significant effect on the values of
indentation creep (Figure 9e). Once again, the indentation creep decreased by 20% until the
measurement point was located at 154 mm and then improved by 36%. The indentation
creep value measured at the end of the sample was 14% higher in comparison with the gate.

The measurement of the mechanical properties of the surface layer at individual
distances from the gate shows that the length of polymer flow and subsequent cooling of the
polymer within the cavity have a significant influence on the mechanical and morphological
properties of injection-molded products. Within the surface layer, the mechanical properties
(indentation hardness, indentation modulus, and indentation creep) were not homogenous
along the flow direction. The maximum values were measured at the gate (0 mm) and
at the end of the injection-molded product (208 mm), while the minimum values were
measured at the middle of the sample (154 mm), which resulted in the decline of mechanical
properties. The measurements at a penetration depth of 100 µm displayed an opposite
trend in values of indentation hardness. An increasing indentation hardness was observed,
up to 154 mm from the gate. The increase in indentation hardness from the gate (0 mm) to
the distance of 154 mm was approximately 43%. On the other hand, a significant decrease in
mechanical properties, up to 15%, was observed at the end of the sample. When comparing
the gate and end of the sample, it can be seen that there was a 24% increase in indentation
hardness between these points. (Figure 9b).

The values of indentation modulus in 100 µm depth once again demonstrated an
opposite trend to those found in 20 µm. Towards the center of the part, an increasing trend
in values of the indentation modulus was observed. The difference between the gate (0 mm)
and middle (154 mm) was 120%. Towards the end of the part, the indentation modulus
decreases by 47% (Figure 9d).

Values of indentation creep in 100 µm displayed improvement towards the center of
the part by up to 18%. Towards the end of the sample, the values of indentation creep were
the same as those measured in the gate location (Figure 9f).

An opposite trend in mechanical properties was observed in deeper layers of the
material in comparison with the surface layer. This trend was also dependent on the
distance from the gate. An increasing trend in mechanical properties was observed in test
samples along the flow direction, i.e., the mechanical properties rose from the gate up to
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154 mm from the gate and, on the other hand, declined from 154 mm from the gate up to
the end of the specimen.
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Figure 9. Influence of measurement depth and distance from the gate on mechanical properties:
(a) indentation hardness—1 N (penetration depth 20 µm), (b) indentation hardness—5 N (measure-
ment depth 100 µm), (c) indentation modulus—1 N (depth of measurement 20 µm), (d) indentation
modulus—5 N (depth of measurement 100 µm), (e) indentation creep—1 N (depth of measurement
20 µm), (f) indentation creep—5 N (depth of measurement 100 µm).

The observed changes in mechanical properties are given by the distribution of the
crystalline phase and the change in the arrangement of the structure (size and shape of
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spherulites) along the flow direction. This is significantly influenced by the magnitude of
holding pressure and mold temperature. The aforementioned findings correspond with the
behavior of polymers within the cavity, in which the polymer experiences fountain flow,
i.e., the polymer moves from the middle of the cavity to the cold surface of the mold, where
the polymer melts quickly, cools down, and creates a frozen layer. As is described in the
following sub-paragraph, property changes at varying distances from the gate were caused
by different skin layer thicknesses along the part. Molecules in this layer are more oriented,
and the total content of the amorphous phase is higher than in the core. The thickness of
the skin layer is lowest at the gate and at the end of the sample, while a thicker skin layer
can be found in the middle of the sample.

3.4. Micro-Mechanical Properties across Sample Depth

In this sub-paragraph, the influence of gate distance in varying depths of the test
sample on the mechanical properties was observed. The measurements were conducted
on cut slices of test samples picked out at differing distances from the gate. The goal of
this measurement was to prove varying mechanical properties in the cross-section of the
test samples. The presentation of results was conducted using 3D columns in order to
clearly display the trends of mechanical properties at two levels (along the specimen and in
individual depths). The average values and standard deviation presented in these graphs
can be seen in Tables 8–10.

Table 8. Statistical parameters of indentation hardness (MPa).

Length of Flow Statistical Parameters Distance from Surface (mm)
mm MPa 0 0.25 0.5 0.75 1

0 x 71.85 75.21 84.22 76.15 73.74
s 0.72 0.81 0.81 0.17 0.74

76 x 71.23 75.74 87.78 79.71 69.84
s 0.55 0.75 0.71 0.58 0.48

154 x 68.30 77.69 90.53 79.97 67.56
s 0.65 0.70 0.82 0.58 0.93

192 x 67.46 81.07 86.41 79.96 66.70
s 0.93 0.65 0.19 0.11 0.51

208 x 70.07 77.95 84.38 78.79 70.08
s 0.66 0.45 0.65 0.87 0.96

Table 9. Statistical parameters of indentation modulus (GPa).

Length of Flow Statistical Parameters Distance from Surface (mm)
mm GPa 0 0.25 0.5 0.75 1

0 x 1.36 1.54 1.68 1.56 1.38
s 0.04 0.03 0.05 0.08 0.05

76 x 1.28 1.65 1.81 1.73 1.29
s 0.05 0.04 0.01 0.03 0.06

154 x 1.26 1.72 1.92 1.79 1.21
s 0.09 0.08 0.06 0.07 0.03

192 x 1.30 1.68 1.84 1.69 1.28
s 0.03 0.01 0.01 0.02 0.03

208 x 1.33 1.38 1.62 1.41 1.33
s 0.06 0.08 0.04 0.01 0.09

The measured results indicate that the distance from the surface has a significant
influence on mechanical properties. The results from all gate distances show that the
indentation hardness is significantly higher at the center of the part than at the surface.
These differences were, for example, 17% at the gate and 33% at 152 mm from the gate
(Figure 10a). A similar trend was measured for the indentation modulus, which rose
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towards the center (Figure 10b). The difference between the surface at the gate and in the
middle of the sample was 24%, while it was 53% at 0.5 mm depth. For indentation creep,
a similar improvement between surface and center was measured, up to a 39% increase
(Figure 10c).

Table 10. Statistical parameters of indentation creep (%).

Length of Flow Statistical Parameters Distance from Surface (mm)
mm % 0 0.25 0.5 0.75 1

0 x 12.56 11.92 11.54 12.05 12.56
s 0.31 0.32 0.34 0.36 0.31

76 x 14.32 11.37 11.21 12.13 14.32
s 0.32 0.13 0.09 0.24 0.32

154 x 14.94 10.87 10.69 11.70 14.94
s 0.34 0.19 0.11 0.08 0.34

192 x 14.05 11.64 11.46 12.05 14.05
s 0.36 0.07 0.15 0.31 0.36

208 x 11.00 12.32 11.94 12.05 11.00
s 0.37 0.32 0.34 0.36 0.37
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These results confirm the findings discussed in Sections 3.2 and 3.3 while also showing
that the polymer structure is not the same across the entire cross-section of the tested sample.



Lubricants 2024, 12, 202 17 of 25

3.5. Surface Quality

Results of surface replication (Figures 11 and 12) indicate that the surface quality of
injection mold replicates on test samples to a limited degree and differently at individual
points of the part. Milled surfaces displayed deviances in surface qualities that could be
caused by the direction of milling. According to the results, the surface quality changes
over the course of the flow length. The surface quality of the test sample near the gate was
Ra 1.1 µm, while the mold had 2.1 µm. The surface quality at the end of the test sample
(225 mm from the gate) was similar to the gate. Surface qualities at gate distances of 77 mm
and 154 mm increased to 1.4 µm in comparison with mold, which displayed Ra 1.8 µm.
After this measurement point, surface quality decreased all the way towards the end. The
surface quality at the gate was Rz 7.5 µm for the test sample and Rz 11 µm for the injection
mold, while at the end, the surface quality was Rz 4.2 µm at the gate and Rz 10.5 µm for
the mold.
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The surface quality of the mold replicated with better surface quality on the test
sample. The replication can be influenced by numerous factors, such as injection pressure,
mold temperature, enclosed air, etc. The main parameter that influences surface replication
is pressure drop, which manifests in a decrease in surface quality from 154 mm from the
gate all the way to the end of the test sample.

The surface profile, as shown by the 3D surface image (Figure 12), shows that the
difference in replication is significant. During flow, the polymer failed to fill the biggest
irregularities in the mold due to the temperature profile. For all measured points, a positive
trend in surface replication was measured. The results of the tool’s and test sample’s
2D surface quality profiles indicate that the highest irregularities of the tool surface were
not replicated on top of the test sample, which manifested in differing surface quality
at individual measurement points. These tendencies were most likely influenced by the
pressure drop in the cavity, enclosed air, and melt temperature.
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3.6. Influence of Gate Distance on Polypropylene Structure

This part served for the observation of morphology changes that occurred during the
filling and cooling of test samples in the cavity. The individual structural changes were
measured at the same distances from the gate as the mechanical properties.

3.6.1. Polarized Optical Microscope

The changes in surface layer (skin) thickness were observed along the length of the
part by a polarized optical microscope. Microtome cuts with 20 µm thickness were made at
individual distances from the gate. During injection molding, the polymer is forced to flow
towards the cold surface of walls, where it cools and solidifies; this is called the fountain
flow. This type of layer displays a high degree of orientation (Figure 13), which directly
translates to specific polymer properties.
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Figure 14 illustrates cross-sectional views of different morphological structures on
the surface and in the middle of an injection-molded tensile sample. As can be seen, the
morphological structure changes with the thickness of the injected samples. The structure
with high orientation appears in the skin layer, and the spherulitic structure with essentially
no preferred orientation appears in the core layer. It has been reported that in the skin
layer, because of the high shear stress and shear strain, the extended polymer chains lead
to extended chain crystals. In the core layer, because of the absence of shear, the random
polymer chains lead to lamellar, chain-folded crystals, and, finally, spherulites. Hence, the
structure is related to flow-induced crystallization, and the spherulitic structure is related
to quiescent crystallization.
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As can be seen in Figure 14, the skin layer is not the same along the injection-molded
part. The thickest skin layer can be found at gate distances of 158 mm in the sample (up to
20 µm), while the thinnest skin layer can be found at the end of the part. These differences
in the thickness of the highly oriented layer are due to differences in the intensity and
velocity of cooling of the polymer during mold filling. This is reflected in the resulting skin
layer. The high orientation of macromolecules in the surface layer prevents the PLM light
from passing, as seen in Figure 14. This surface layer has a significant influence on the
varying mechanical properties of the part.

3.6.2. Differential Scanning Calorimetry

This sub-paragraph deals with observed changes in crystallinity (heat flow, Table 11)
due to differing distances from the gate (Figure 15). Results of surface layer crystallinity
indicate that the highest content of the crystalline phase is near the gate and at the end
of the part. Towards the middle of the sample, the content of crystallinity decreases
(Figure 15b). Crystallinity in the core layer (Figure 15d) points towards the opposite trend
as observed in the skin layer. The highest crystallinity was measured at the center of the
sample (158 mm). These results agree with the mechanical property measurements, which
followed a similar trend.

Table 11. Heat flow ∆Hm (J/g).

Length of Flow Heat Flow ∆Hm (J/g)
mm 100% Crystalline Polypropylene Skin Core

0 88.78 84.45
76 87.48 88.69

154 207 84.19 92.01
192 88.28 86.42
208 91.45 86.51

It is obvious from the DSC measurements that the crystalline phase content, and thus
micro-mechanical properties, change along the flow length (Figure 15). These changes
correspond with changes in micro-mechanical properties. The crystallization rate is not
uniform during polymer cooling, and so different structures are created, including shear-
oriented lamellae and spherulites. These structures provide different mechanical properties.

The injection molding process is sensitive to polymer temperature, especially during
cooling, during which the molecular chains orient in the direction of flow. In the core layer,
the longer chains can remain in a stretched-out state, while the shorter chains are oriented
randomly during filling. In the final structure, the prevalence of spherulites is significant.

The aforementioned results correspond with polymer behavior in the cavity, where the
polymer flows by fountain flow from the middle towards the cold surface of the walls. The
polymer melts, cools rapidly at the wall, and creates a solid layer. This significant cooling
imposes a high degree of elongation orientation in the skin layer, while in other layers, the
molecules have more time to relax. The combined effect of solidification and relaxation
creates several regions with varying degrees of orientation (surface layer, shear layer, and
core). The surface layer solidifies quickly with next to no relaxation and contains highly
oriented molecules. This is caused by elongation deformation brought on by fountain flow.
The degree of orientation corresponds with the flow length at the moment the mold is filled.
The final orientation along the flow length is strongly affected by the holding pressure phase,
as mentioned above. The degree of orientation and especially differences in crystalline
morphology in individual layers of a part have a significant effect on research properties.

In technical practice, a part is generally understood to have uniform properties along
its entire length. Although this does not correspond with reality, the properties can vary at
different points. The findings of this work show that it is not possible to view one part as
homogenous (from the mechanical and morphological point of view), but it is necessary to
focus on specific points of the injected part. A suitable choice of gate location and process
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conditions, such as holding pressure or mold temperature, can result in improved local
properties. This can be especially beneficial in parts with local straining, as they can be
modified without requiring more expensive material.
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4. Discussion

This research aims to explain the tribological and mechanical behavior of polypropy-
lene to support the beneficial introduction of those materials in actual applications. Gen-
erally, the designers have to take into consideration a set of tribological and mechanical
parameters, not only one, including friction coefficient, wear, contact durability related to
application, and the hardness of the surface. Polymers are very promising materials to be
used for rubbing components in machines and devices. However, the selection of materials
with appropriate tribological and mechanical properties is critical. Understanding the
frictional and wear mechanisms controlled, in particular by the intensive and decisive
transfer of material during the operation of polymeric tribosystems, is a very important task
for tribologists. Low cost, corrosion resistance, damping of vibrations, ability to adapt to
work in the presence of contamination, and many other advantages of the use of polymers
in sliding (as well as rolling) systems open up a very interesting research area for tribology.

This research is part of large-scale research based on sub-parts from practice, where it
has been found that the mechanical and tribological properties are not the same along the
length but vary at different points in the injection-molded products. Based on this finding,
test molds with different lengths, shapes, and cross-sections (straight cavity (Figure 2),
spiral cavity, and cavity in the form of a tensile test body) were designed, in which the
surface of the cavity was manufactured by different technologies with manual surface
roughness (milled cavity Ra 1.6 µm, grinded cavity Ra 0.8 µm and Ra 0.45 µm, polished
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cavity Ra 0.1 µm, and coated cavity TiB2). Subsequently, the tested materials (PP, PA6,
etc.) and conditions of injection molding (melt temperature in the range of 215 to 255 ◦C,
mold temperature 30–50 ◦C, and injection pressure 20–80 MPa) were changed. Based on
these variations, it is possible to declare that the results demonstrated in this work can be
used even in the case of different mold cavities and surfaces, materials, and processing
parameters. The main condition is that the product has a shape with a longer flow path.
Then, it can be said that the product’s properties are not the same along the length of the
part and are influenced by numerous factors that can be affected during injection molding.
These changes have a significant effect on the distribution of the skin–core layer and, thus,
the mechanical and tribological properties.

These findings are crucial for technical practice and can be used in the injection
molding of polymer materials in the industry. Currently, in technical practice, the view
of an injection-molded product’s properties is quite simplified, with no regard for the
non-homogeneity along the flow length. Based on the findings of this study, mold or
process parameters can be modified to improve the properties of injection-molded products.
The areas of the product that are more mechanically strained can be locally reinforced by
these modifications. The biggest influence on mechanical and tribological properties along
the flow is exerted by gate placement, which is closely followed by polymer cooling in
the cavity. A local change in mold temperature in concrete areas could lead to significant
changes in mechanical properties. Due to the aforementioned effects, there could be a
change in the morphological structure of the polymer in the specified area, which could
then manifest as changed mechanical and tribological properties. This publication opens
new opportunities for modification of the injection molding process that could be used for
complex applications with specific requirements.

This knowledge was applied to a practical part, which was a headlamp bezel, where
the clamping points were subject to cracking. By changing the location of the injection
gate, changing the melt and mold temperature, and modifying the tempering circuit, the
mechanical properties were improved (up to 38%). This was achieved by more intensive
cooling in the problem area and also by changing the injection gate location so that the
polymer path was not too long, thus moving the stronger spot into the clamping point area.
It is also possible to improve these properties by applying a TiB2 coating to the mold cavity,
which will improve the flowability of the polymer and increase the mechanical properties.
As the following research shows, the application of the coating increased the mechanical
properties by 33%.

The tribological, mechanical, surface, and morphological properties of the injection-
molded polypropylene samples were investigated. It was found that the injection molding
process and the gate location can be used to increase the abrasion resistance of polypropy-
lene. We have also found that the relationship between tribological characteristics and
morphological characteristics (skin–core layer, crystallinity, etc.) has a major influence on
the final product. This can be attributed to the injection molding process, the location of the
injection gate, and the behavior of the polymer during cooling, resulting in a higher surface
resistance of the polypropylene. Thus, it can be concluded that in order to achieve optimum
tribological and mechanical properties of injection-molded polypropylene, it is necessary
to monitor the morphological properties of the material with a focus on crystallinity, which
has a major influence on the aforementioned properties.

Gained results of varying properties along the flow path of injection-molded properties
change the view of polymer behavior during injection molding and can have a significant
effect on technical practice. For a complex description of this behavior, further investigation
is necessary, especially with a focus on other polymer materials or process parameters.

5. Conclusions

This work deals with the influence of gate distance on the properties of injection-
molded polypropylene parts. The importance and current research in the area of tribological
and mechanical properties of injection-molded product surfaces have been extensively
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reviewed to provide an understanding of their importance and benefits relating to their
use in industry. The effect of the technology itself, manufacturing processes, and related
process parameters on the tribological properties of injection-molded polypropylene has
been discussed in terms of the complex behavior of the polymer surface. Understanding
the mechanisms of friction and wear on an injection-molded part is very important for
designers and, when correlated with mechanical properties and especially morphological
properties, opens up a very interesting area of research in the field of tribology. Prepared
test samples were measured for their micro-mechanical properties (indentation hardness,
indentation modulus, indentation creep), tribological properties (friction force, acoustic
emission, friction coefficient), surface quality, and structural changes.

The test samples showed heterogenic behavior along the flow length as well as within
individual depths of the part. In the surface layer (depth of measurement 20 µm), the
mechanical properties decreased from the gate to the middle of the sample (158 mm). This
decrease was in total 15% for indentation hardness and 55% for indentation modulus. The
tribological properties also showed similar behavior to the micro-mechanical properties.
The coefficient of friction has its maximum value at the beginning and end of filling
and decreases towards the middle distance of filling. The coefficient of friction increases
significantly with crystallinity. The difference in the tribological properties (coefficient
of friction) between the individual points of the part was up to 20%. Towards the end
of the sample, an opposite trend was observed. Deeper in the surface layer (100 µm),
an opposite trend was found for mechanical properties, with its maximum at the center
of the sample. The increase towards the center of the sample was 43% for indentation
hardness and 120% for indentation modulus. Also, the replication of the tool surface on
the test sample surface showed significant changes along the polymer flow. The measured
results were probably influenced by the filling process as well as the process parameters of
injection molding. These parameters affected the creation of the final skin–core structure
and crystallinity, which varied along the flow length but also through the cross-section.
The results indicate that the proper indentation method can catch changes in tribological
and mechanical properties that were influenced by polypropylene morphology. Thus,
morphology changes can be correlated with tribological and mechanical changes.

In conclusion, this work demonstrates that the properties of injection-molded parts
are not uniform along the entire sample but change locally according to conditions within
the mold. This significantly alters how tribological and micro-mechanical properties are
looked upon in injection-molded parts. An important part is played by the way a mold is
filled and how this, together with flow behavior, influences the final properties at specific
points of a part.
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