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This research focuses on the fractional complex order plant (𝐹𝐶𝑂𝑃). The significant contribution is the 

role of complex plant models in system stability and robustness and associated physical phenomena. 

A general transfer function is studied in the paper. Other plant models may be built with this structure 

since the 𝐹𝐶𝑂𝑃 is a general mathematical form covering integer order plant (𝐼𝑂𝑃) and fractional order 

plant (𝐹𝑂𝑃). Using the equations produced with the proposed technique and the recommended 

integer order proportional derivative (𝐼𝑂𝑃𝐷 controller, physical changes in integer, fractional and 

complex coefficients, and orders are observed within this paper. Analysis of the plant controlled with 

an 𝐼𝑂𝑃𝐷 controller is done by applying an integrator to reveal the differences. The effects of the 

parameters are discussed together with the visuals, supported by simulations. The aim is to tune the 

controller parameters to achieve the phase and specifications as the researcher desired. It is observed 

that the integrator greatly takes part in reducing the steady-state error. The IOP with the integrator 

showed the lowest steady-state error, and also, the settling and overshoot time were enhanced. 

Increase in the phase margin also caused an increase in the phase crossover frequency. It is also 

observed that the fractional order affected the phase crossover frequency comparing with the IOP, 

and the complex order modification also had an effect comparing to the fractional order version. The 

complex order of the system is considered with its conjugate components in the imaginary part thus, 

the results are found separately for each case. 

 

KEYWORDS: Analytical method, controller design, fractional complex order, fractional order, integer 

order, proportional derivative 

 

1 INTRODUCTION 

The Proportional-Integral-Derivative (PID) control is a general and efficient solution to real-world 

control issues because of its three-term functionality, which treats both transient and steady-state 

responses [1]. The three main control effects seen in current controllers are investigated, and practical 



names and units of measurement for each impact are provided [2]. Because of its sturdy performance 

and simplicity, 𝑃𝐼𝐷 controllers are widely employed in the process industries. Indeed, more than 90% 

of control loops are of 𝑃𝐼𝐷, while the majority of loops are PI since derivative action is rarely utilized 

[3, 4]. By adding non-integer derivative and integral elements in the plant model or controller, 

fractional calculus allows greater degrees of freedom in modeling and control of dynamical systems 

[5-7]. Given the fact that complex order differentiation was formally described many years ago, 

complex order transfer functions are not as commonly employed as real order ones. In comparison to 

real-order controllers, fractional complex order controllers contain more parameters. As a result, a 

greater number of objectives can be met [8, 9]. With the work of Liouville and Riemann at the turn of 

the nineteenth century, the generalization of differentiation to real or complex orders was formalized 

[10, 11]. Afterwards, number of the related studies had a sharp increase. For example, Abdulwahhab 

et al. obtained both real and complex fractional order 𝑃𝐼𝐷 controllers that are constructed for a low 

pressure flowing water circuit, which is a First Order Plus Time Delay system [12]. The focus of Bingi et 

al. was to create a sophisticated fractional order differentiator and integrator for the order 𝛼 + 𝑗𝛽 in 

a previous study [13]. Stability region design of fractional complex order 𝑃𝐼 controller using 𝐷 

segmentation is the topic of Zheng et al. in a previous study [14]. Tuning of complex coefficient 

𝑃𝐼/𝑃𝐷/𝑃𝐼𝐷 controllers for a universal plant structure is the emphasis of Sathishkumar et al. in a 

previous study [15]. Sathishkumar et al.’s structure was for integer/fractional order plants with real 

coefficient and dead time in a previous study [16]. In order to guarantee system robustness against 

gain and noise, Guefrachi et al. in a previous study [8] suggested a novel fractional complex order 

control structure management based on an optimization design. Hanif et al. used the genetic algorithm 

to improve the performance of the new form of fractional complex order controller in a previous study 

[17]. Sekhar et al. used the complex order PID for surface roughness control in machining of 𝐶𝑁𝑇 𝐴𝑙 −

𝑀g hybrid composites in a previous study [18]. Saikumar et al. described the development of a complex 

order filter and its subsequent integration into a 𝑃𝐼𝐷-based controller design in a previous study [19]. 

Due to the relation with fractional order differentiation, the studies on the problems related to partial 

differential equations should be useful to cite too. For example, a (2 +1) and a (3 + 1)-dimensional 

sine-Gordon equation and a sinh-Gordon equation are derived in the studies [20, 21], and a new (3 + 

1)-dimensional Schrodinger equation in Quantum Mechanics is derived by Wang [22]. It would also be 

useful to give brief information about the Lie group studies. A group that is also a differentiable 

manifold is called a Lie group. Groups define the abstract concept of a binary operation along with the 

additional properties it must have to be thought of as a “transformation” in the abstract sense, such 

as multiplication and the taking of inverses or, alternatively, the concept of addition and the taking of 

inverses. A manifold is a space that locally resembles Euclidean space. Combining these two concepts 

results in a continuous group with continuous multiplying points and inverses. A Lie group can be 

obtained if the multiplication and taking of inverses are both smooth. In this direction, a systematic 

study of the generalized KdV-Burgers-Kuramoto equation using the symmetry method is presented in 

a previous study [23], a new (3 + 1)-dimensional KdV equation and MKdV equation with their 

corresponding fractional forms are presented in another study [24], and the modified Gardner type 

equation and its time fractional form is studied by Wang and Wazwaz [25]. Researchers are now 

investigating the use of complex order differ-integral operators in control theory and system modeling 

[26-36]. Although not exactly the same as this paper, there can be found studies in the literature aiming 

to provide frequency specifications. The common aim of these studies is to tune a convenient 

controller to achieve robustness against gain changes; hence, in this paper, a different point of view is 

utilized [37, 38]. When the approach in this paper is compared with the previous studies, the goal of 

tuning the controller parameters to obtain desired phase specifications is in a similar way. However, 

these studies brought mathematical complications when providing the robustness by setting the phase 



derivative to zero at the phase crossover frequency [39-41]. The approach in this paper is totally an 

analytical point of view. 

Using the 𝐹𝐶𝑂𝑃 model and integer order proportional derivative (𝐼𝑂𝑃𝐷) controller structure, which 

are becoming more and more widespread in applied physics and control systems, the goal of this work 

is to generate analytical solutions and evaluate the physical phenomena of these results. The classical 

proportional derivative controller structure with a complex system is considered, which has received 

little attention in the literature so far. The results of the solutions for the stability and robustness of 

the system achieved with various values of the parameters are discussed and supported by simulations 

and visuals. The effects of the real and imaginary components of the complex number in the process 

are observed from a different point of view in system design. 

 

2 SPECIFICATIONS FOR A CLOSED LOOP CONTROL SYSTÉM 

Figure 1 depicts the closed loop control system block diagram employed in this study. 

The input Laplace sign of the system is 𝑅(s), and the output Laplace sign is 𝑌(s). 𝑃(s) denotes the 

controlled system, and 𝐶(s) is the controller. The system’s open loop transfer function is now known 

as 𝐺(s) and may be found in Equation (1). 

 

 

𝑇(s) is the closed-loop transfer function of the system, which may be found in Equation (2). 

 

 

As can be observed, the system’s closed-loop transfer function is closely related to its open-loop 

transfer function. 

 

3 SPECIFICATIONS FOR AN OPEN LOOP CONTROL SYSTEM 

The Bode diagram is a graph that shows the system’s gain and phase margin curves together. 

Illustrating two system components in a single image at the same time is quite convenient. In the 

analysis of open loop systems, Bode diagrams are utilized. In the diagram, the gain crossover frequency 

is 𝜔𝑔𝑐 and the phase crossover frequency is 𝜔𝑝𝑐. The gain crossover frequency is the frequency at 

which the gain curve cuts OdB. Similarly, the frequency value where the phase curve cuts -180° is 

known as phase crossover frequency. The gain margin (GM) shows how much the open loop system’s 

gain can be increased before reaching system instability. Similarly, the phase margin (𝑃𝑀) specifies 

how much the open loop system’s phase can be increased before reaching system instability [37, 42, 

43]. 



Equations (3)-(4) give the phase and gain of the system at the gain crossover frequency, and Equations 

(5)-(6) give the phase and gain of the system at the phase crossover frequency. These specifications 

will be used throughout the paper. 

 

 

 

  

 

 

 

As can be told from the above equations, the gain and phase crossover frequencies in the Bode 

diagram are closely related to the system’s stability and robustness across a large range. 

 

 

 

 

FIGURE 1 Block schematic of a closed loop control system. 

 

4 DISTURBANCE IN THE LOAD 

The current error of a system increases when it encounters unexpected load disturbance signals. 

Unwanted external input signal to the system is what this circumstance is defined as. In control studies, 

design of a stable system is important. In stable systems, avoiding or fully eliminating system failures 

that may emerge as a result of such unexpected load disturbance signals makes the design process 

even more critical. Figure 2 depicts the system load disturbance block diagram used in this study [44-

46]. 

The unit step signal is described in Figure 3 as an unexpected load disturbance signal at any time when 

the system is in the steady state. In this study, a certain value will be used as the time value after the 

step response of the system has settled. 

Equation (7) gives the partial function representation of the load disturbance signal. 

 



 

 

 

The charge disturbance signal’s 𝐷(s) input Laplace sign is obtained in Equation (8) by converting 

𝑑(𝑡)  =  𝑢(𝑡 —  𝑎). 

 

  

In the findings of the development of the systems utilized in this study, 𝑀𝐴𝑇𝐿𝐴𝐵, the multi-paradigm 

numerical computing software, was used to display the response of the system under load disturbance. 

Simulink, a 𝑀𝐴𝑇𝐿𝐴𝐵-based graphical programming environment, has been used to model, simulate, 

and evaluate dynamic systems. Figure 4 shows the Simulink circuit diagram for the system under load 

disturbance. 

The results of this study were achieved using a computer with an Intel® Core™ i5-4460 CPU running at 

3.20 GHz, RAM of 12.0 GB, and a 64-bit operating system with an ×64-based processor. 

 

5 DESIGN OF THE UNIVERSAL PLANT 

Equation (9) is a general representation of a plant transfer function that can include integer, fractional, 

and complex number coefficients or orders, time-delayed, or non-delayed extra gain coefficients. 

 

 

 

 

 

FIGURE 2 Block schematic of system load disturbance. 

 

 



 

 

 

 

 

 

 

 

 

FIGURE 3 Load disturbance signal. 

 

FIGURE 4 Simulink circuit schematic for a system with a load disturbance. 

 

Here, the gain is 𝐾, and the time delay coefficient is 𝐿. The 𝑖𝑡ℎ even part of the complex coefficients of 

the numerator polynomial is represented by 𝑎𝑒𝑖, whereas the 𝑖𝑡ℎ odd part is represented by 𝑎𝑜𝑖. In 

the similar way, 𝑏𝑒𝑘 represents the 𝑘𝑡ℎ even part of the complex coefficients of the denominator 

polynomial and 𝑏𝑜𝑘 represents the 𝑘𝑡ℎ odd part. 

Likewise, the 𝑖𝑡ℎ even part of the complex orders of the numerator polynomial is represented by 𝑎𝑒𝑖 

and the ith odd component is represented by 𝑎𝑜𝑖. 𝛽𝑒𝑘 represents the 𝑘𝑡ℎ even part of the complex 

orders of the denominator polynomial, and 𝛽𝑜𝑘 represents the 𝑘𝑡ℎ odd part. 

Equation (10) gives the frequency response representation of the above plant. 

 

 

 

With the use of Euler's equation, a complex number can be transformed from its trigonometric form 

to its exponential and also from its exponential form to its trigonometric form. In this direction, 

Equation (11) shows the trigonometric expression of a complex order (𝑗𝜔) in the numerator 

polynomial. 



 

Similarly, Equation (12) stands for the trigonometric expression of a complex order (𝑗𝜔) in the 

denominator polynomial. 

 

Then, the plant frequency response can be re-expressed as in Equation (13) by changing the formulas 

in Equations (11) and (12) to exponential form. 

 

 

Equation (14) re-expresses the plant frequency response described in Equation (13) in a more simple 

form. 

 

 

Here, 𝑛𝑒 and 𝑛𝑜 stand for the even and odd parts of the numerator polynomial, respectively. Similarly, 

𝑑𝑒 and 𝑑𝑜 are the even and odd parts of the denominator polynomial, respectively. Equations (15)-

(16) show the frequency response representations of 𝑛𝑒 and 𝑛𝑜, respectively. 

 

 

 

Equations (17)-(18) show the frequency response representations of de and do, respectively. 

 



   

Using complex number theory, the frequency response representation can be summarized in its gain 

and phase parts as  

 

  

Referring to the above equation, Equation (20) gives the gain value of the plant frequency response. 

 

Likewise, Equation (21) gives the phase value of the plant frequency response. 

 

As a consequence for this section, the gain and phase equations for the plant frequency response were 

found. 

  

6 DESIGN OF THE UNIVERSAL PLANT WITH AN INTEGRATOR 

Equation (22) is the plant transfer function with an integrator produced by multiplying the transfer 

function given in Equation (9) by 1/s. The components of the plant with the integrator will be shown 

with 𝑎 ∗ from this point forward. 

 

 

Equation (23) shows the frequency response of plant with the integrator in Equation (22). 

 



As the integrator affects the denominator polynomial, trigonometric transformation of the complex 

order operator of the denominator is given below. 

 

The frequency response of the plant with integrator can be re-expressed as given in Equation (25) by 

converting the formulas in Equations (11) and (24)to the exponential form. 

 

Simplified representation of the above equation is given in Equation (26). 

 

 

Here, the even and odd parts of the numerator polynomial are the same as given previously. In 

Equations (27)-(28), the frequency response of 𝑑𝑒∗ (even part) and 𝑑𝑜∗ (odd part) of the denominator 

polynomial of the system with the integrator are given respectively. 

 

 

As the result, Equation (29) gives the gain of the plant’s frequency response with integrator and 

Equation (30) gives the phase of the plant’s frequency response with integrator. 



7 DESIGN OF THE PD CONTROLLER 

The classical 𝐼𝑂𝑃𝐷 controller’s transfer function is described in Equation (31). 

 

 

The proportional coefficient of the controller is indicated by 𝑘𝑝. Likewise, 𝑘𝑑 shows the derivative 

coefficient. Equation (32) shows the frequency response of the 𝐼𝑂𝑃𝐷 controller. 

 

  

The frequency response of the 𝐼𝑂𝑃𝐷 controller showing its gain and phase parts is given in Equation 

(33). 

 

 

From the above equation, gain and phase of the controller frequency response are given in Equations 

(34) and (35), respectively. 

 

 

 

Thus, the frequency response of the controller is found. 

 

8 DESIGN OF THE AUTO TUNING SYSTÉM 

Equation (36) gives the frequency response of the system of the plant and the controller. 

 

  

Then, gain and phase of the system can be found using the representaions in Equations (37)-(38). 

 

 



 

Notations in Equation (39) will be used in future expressions to make a convenience in the calculation 

of system gain and phase at the gain crossover frequency 𝜔𝑔𝑐. 

 

From Equation (37), gain of the system at the gain crossover frequency is given in Equation (40). 

 

Similarly, from Equation (38), phase of the system at 𝜔𝑔𝑐 is given in Equation (41). 

 

Following substitution in Equation (41) is done to calculate the 𝐼𝑂𝑃𝐷 controller's performance 

coefficients. 

 

 

 

 

Here, 𝜑1 is 

 

 

From above equations, 𝑘1 and 𝑘2 of the 𝐼𝑂𝑃𝐷 controller are obtained for 𝜔𝑔𝑐 and given in Equation 

(44). Here, 𝑘𝑝 = 𝑘1 and 𝑘𝑑 = 𝑘1𝑘2 replacing is considered in order to minimize the calculation cost. 



 

Now, one can find the controller parameters for the phase crossover frequency. From this point 

forward, notations in Equation (45) will be used to make a convenience in the calculation of system 

gain and phase at the phase crossover frequency 𝜔𝑝𝑐. 

 

From the frequency specifications given previously, gain and phase of the system at the phase 

crossover frequency is given in Equations (46) and (47), respectively. 

 

 

Again, for 𝜔𝑝𝑐, substitution shown in Equation (48) is made in Equation (47) to calculate the controller 

coefficients. 

 

 

 

where 𝜑2 is 

 

Substitutions of 𝑘𝑝 = 𝑘1 and 𝑘𝑑 = 𝑘1 𝑘2 are made to reduce the cost of calculation and then, 𝑘1 and 

𝑘2 of the 𝐼𝑂𝑃𝐷 controller are obtained for 𝜔𝑝𝑐 and given in Equation (50). 



 

Now, the controller parameters to satisfy the frequency specifications in both crossover frequencies 

are obtained. The next is to combine the seperately found parameters to achieve the specifications at 

the same time. The 𝐷𝐵 and 𝐺𝑀 can be derived by solving the 𝑘1’s in Equations (44) and (50) together. 

At the same time, together, the solution of the 𝑘2’s in these equations yields the mpc phase crossover 

frequency, which corresponds to the mgc gain crossover frequency. In fact, in this method, the largest 

frequency range that the system can work with are obtained without giving an external value to the 

gain crossover frequency. 

On both the gain and phase crossover values of the above equations of 𝑘2, numerical analysis steps 

created by tracking the common intersection points of the two equations are applied to deter+mine 

the gain crossover frequency. As the result, specified unknowns are discovered and the 𝑘𝑝 and 𝑘𝑑 

values are generated using the substitution approach. The replacement method is used to validate the 

accuracy and validity of the data produced at the previous stage. 

 

9 I DESIGN OF THE AUTO TUNING SYSTEM WITH AN INTEGRATOR 

As stated before, the components of the plant with the integrator were shown with 𝑎∗ sign. Notations 

in Equation (51) will be used to make a convenience in the calculation of this system’s gain and phase 

at the gain crossover frequency 𝜔𝑔𝑐. 

 

Then, the gain of the system can be obtained in a similar way to Equation (40). Also, the phase of the 

system can be obtained as in Equation (41). Here, the steps are in the same order as given in Equations 

(41), (42), and (43). Again, substitutions of 𝑘𝑝 = 𝑘1 and 𝑘𝑑 = 𝑘1𝑘2 are used to simplify the calculation. 

Consequently, 𝑘1 and 𝑘2 are obtained for 𝜔𝑔𝑐 as given in Equation (52). 

 



Equation (53) shows the notations to calculate the gain and phase of the system with integrator at the 

phase crossover frequency. 

 

 

Gain and phase of the system can separately be obtained by the help of Equations (46) and (47), 

respectively. After applying the steps in Equations (47), (48), and (49), coefficients of the controller can 

be found. Thus, controller parameters are found for the phase crossover frequency as given in Equation 

(54). 

 

Hence, the gain and phase calculations of the system are completed. 

 

10 CASE STUDY 

In this section, four examples including systems of integer order, fractional order, and fractional 

complex order are considered. Bode diagrams, step responses, and responses under unexpected load 

disturbances will be created for each controlled system during the stability analysis. The distinctions 

in plant structure changes from the most basic to the most complex under constant conditions will be 

shown in each application. 

 

10.1 Example 1: Integer order plant (IOP) 

Consider the plant Equation (55) utilized by Onat et al. in their research [47]. 

 

 

 

 

The desired gain crossover frequency is 𝜔𝑔𝑐 — 1.5rad/s, and the 𝑃𝑀 is 45° in this example. As a result, 

Equation (56) shows the controller that is generated using Equations (44) and (50). 

 



 

Figure 5 shows the intersection point found by the numerical analysis of 𝑘2, and the Bode diagram of 

the system, with a PM of 45°. It is clear in Figure 5 that the system meets the specified conditions with 

the proposed controller. 

Figure 6 shows the step response of the system without and with the load disturbance. In the first part, 

the step response shows a behavior with a steady-state error because of the lack of the integrator. In 

the second part, the system keeps it stable response under unexpected load disturbance and the 

steady-state error is reduced to zero. 

Table 1 shows the mpc, 𝐺𝑀, 𝑘𝑝, and 𝑘𝑑 values according to the 𝑃𝑀 values between 30° and 60° with 

the increment of 5° using the proposed equations. 

It can be seen in Table 1 that the rise in the 𝑃𝑀 value causes the 𝜔𝑝𝑐 to increase and move away from 

the 𝜔𝑔𝑐. This result demonstrates that the PM value has a direct effect on the 𝜔𝑝𝑐. 

Figure 7 shows the intersection points and Bode diagrams of the system obtain with the 𝑃𝑀 in the 

range 𝑃𝑀 =  [30°, 60°]. 𝜔𝑔𝑐
<1> represents the system with 𝑃𝑀 = 30°, and 𝜔𝑔𝑐

<7> represents the 

system with 𝑃𝑀 = 60°. 

Similarly, Figure 8 shows the step responses with and without load disturbance of the system with 

𝑃𝑀 =  [30°, 60° ] degrees. The load disturbance caused about 40% increment in the steady state of 

the step response. 

It can be concluded that the system shows stable and robust response using the equations derived 

with the proposed technique. 

FIGURE 5 The intersection point of the 𝑘2 values and Bode diagram with 𝑃𝑀 = 45°. [Colour figure can be viewed at 

wileyonlinelibrary. com] 

 



FIGURE 6 The step response of the system and its load disturbance reaction with 𝑃𝑀 = 45°. [Colour figure can be viewed 

at wileyonlinelibrary.com] 

 

TABLE 1 𝜔𝑝𝑐 , 𝐺𝑀, 𝑘𝑝, and 𝑘𝑑  found for varying 𝑃𝑀 values. 

Abbreviations: 𝐺𝑀, gain margin; 𝑃𝑀, phase margin. 

 

 

FIGURE 7 The intersection points of the 𝑘2 values and Bode diagrams with 𝑃𝑀 =  [30°, 60° ]. [Colour figure can 

be viewed at wileyonlinelibrary.com] 

 



FIGURE 8 The step responses of all system and load disturbance reactions. [Colour figure can be viewed 

atwileyonlinelibrary.com] 

 

10.2 Example 2: IOP with integrator 

Consider Equation (57) as the plant in Example 1 with integrator to easily compare the results. 

 

 

The desired gain crossover frequency for this example is 𝜔𝑔𝑐 = 0.75rad/s. Table 2 shows the 𝜔𝑝𝑐, 𝐺𝑀, 

𝑘𝑝, and 𝑘𝑑 values for 𝑃𝑀 values varying between 30° and 60°. 

Again, in this condition, the change in the 𝑃𝑀 value shows its effect on the 𝜔𝑝𝑐 as can be seen in Table 

2. Similar to the previous example, Figure 9 shows the intersection points and Bode diagrams of the 

system obtained with the 𝑃𝑀 in the range 𝑃𝑀 =  [30°, 60° ]. 

The unit step responses and the step responses under load disturbance are given in Figure 10. It can 

be seen in the figure that the load disturbance yielded about 50% change in the peak point of the step 

response and the steady-state error is considerably reduced with the help of the integrator. As the 

result for this example, the desired frequency specifications are successfully met and the system 

achieved stability and improved robustness with the proposed method. 

 

  



TABLE 2 For 𝑃𝑀 variations, 𝑘𝑝, 𝑘𝑑, 𝜔𝑝𝑐 , and 𝐺𝑀 values were discovered. 

Abbreviations: 𝐺𝑀, gain margin; 𝑃𝑀, phase margin. 

 

FIGURE 9 The intersection points to find the controller parameters and the Bode diagrams. [Colour figure can be viewed at 

wileyonlinelibrary.com] 

 

FIGURE 10 The step responses of all systems and load disturbance reactions. [Colour figure can be viewed 

atwileyonlinelibrary.com] 

 

10.3 Example 3: Fractional order plant (FOP) with integrator 

Let us reorganize the plant from Example 2 to Equation (58) by reducing the denominator order by 

50%. Thus, an 𝐹𝑂𝑃 is obtained. 



 

 

 

In this case, 𝜔𝑔𝑐 = 0.75 rad/s is the desired gain crossover frequency. Similar to the previous example, 

Table 3 shows the parameters of the system for 𝑃𝑀 values between 30° and 60°. 

With the increase in PM, the ®pc also increases. Considering the fractional order version of the plant 

in the previous example, the value of 𝜔𝑝𝑐 increased by around 25%. It can also be said that the 

fractional order affected the mpc value when compared to the 𝐼𝑂𝑃 in Example 1. 

Figure 11 shows the intersection points used to find the controller parameters as well as the Bode 

diagrams of the systems obtained for the changing 𝑃𝑀 values. Again, 𝜔𝑔𝑐
<1> stands for the gain 

crossover frequency of the system of 𝑃𝑀 = 30° and 𝜔𝑔𝑐
<7> shows the gain crossover frequency to the 

system with 𝑃𝑀 = 60°. 

Figure 12 shows the step responses without and with the load disturbance for the related systems. As 

a result of the unexpected load disturbance, the system exhibited a change of less than 40%. 

 

TABLE 3 𝜔𝑝𝑐 , 𝐺𝑀, 𝑘𝑝, and 𝑘𝑑  values found for varying values of 𝑃𝑀. 

Abbreviations: 𝐺𝑀, gain margin; 𝑃𝑀, phase margin. 

 

FIGURE 11 The intersection points to find the controller parameters and the Bode diagrams. [Colour figure can be viewed at 

wileyonlinelibrary.com] 

  



  FIGURE 12 The system's step responses and load disturbance reactions. [Colour figure can be viewed at 

wileyonlinelibrary.com] 

 

TABLE 4 𝜔𝑝𝑐 , 𝐺𝑀, 𝑘𝑝, and 𝑘𝑑  values found varying values of 𝑃𝑀 (negative complex part). 

Abbreviations: 𝐺𝑀, gain margin; 𝑃𝑀, phase margin. 

 

The proposed method successfully achieved the desired specifications and the system stability and 

robustness with the fractional order modified plant. 

 

10.4 Example 4: Fractional complex order plant (FCOP) with integrator 

We can add a complex coefficient to the denomintor order of the plant in Example 3 as given in 

Equation (59). The complex coefficient is given in its conjugate form. 

 

 

Let us determine the desired gain crossover frequency as 𝜔𝑔𝑐 = 0.75rad/s. Table 4 shows the 𝜔𝑝𝑐, 

𝐺𝑀, 𝑘𝑝, and 𝑘𝑑 found for 𝑃𝑀 values between 30° and 60° for the system with negative complex part 

of the complex order. 



Table 4 shows that, in this case, the 𝜔𝑝𝑐 value almost expanded with the same rate when compared 

to the plant in Example 3. We see that the system having negative conjugate of the complex order is 

exactly proportional to the system having fractional order on 𝜔𝑝𝑐. 

Table 5 shows that the 𝜔𝑝𝑐 value almost narrowed with the same rate when compared to the plant in 

Example 3. These results show that, when comparing with the 𝐹𝑂𝑃, the complex order plant has a 

direct effect on 𝜔𝑝𝑐 and inversely proportional to the positive complex component. 

 

TABLE 5 𝜔𝑝𝑐 , 𝐺𝑀, 𝑘𝑝, and 𝑘𝑑  values found varying values of 𝑃𝑀 (positive complex part). 

Abbreviations: 𝐺𝑀, gain margin; 𝑃𝑀, phase margin. 

 

FIGURE 13 The Bode diagrams. (A) shows the Bode diagram of the systems having the negative complex part, and (B) gives 

the Bode diagram with the positive complex part. [Colour figure can be viewed at wileyonlinelibrary.com] 

 

Figure 13A shows the Bode diagram of the systems having the negative complex part, and Figure 13B 

gives the Bode diagram with the positive complex part. 

Similarly, Figure 14A shows the intersection points for the system with the negative complex part and 

Figure 14B gives the intersection points for the system with the positive complex part. 

 

11 DISCUSSIONS 

In this study, a plant model representing all the possibilities including integer, fractional and complex 

coefficients, and orders that can have time delay and extra gain coefficient is proposed. A classical 𝑃𝐷 



controller is assumed to control the mentioned plant. The design approach is even more important 

when it comes to minimizing system failures due to unexpected load disturbance signals that a system 

may encounter. At the same time, it has become vital to test and discuss the findings in a simulation 

environment in order to reduce the costs arising from these errors. 

The 𝐼𝑂𝑃 is described initially in this research. Due to the lack of an integrator in the 𝐼𝑂𝑃𝐷 controller 

structure, an integrator component was added to the controller in order to reduce the steady-state 

error. The 𝐹𝑂𝑃 is studied in order to reduce the overshoot time in response to unanticipated load 

disturbance signals of the system by altering the denominator order by 50%. Finally, by adding a 

complex component to this fractional value, the 𝐹𝐶𝑂𝑃 is explained. 

Figure 15A,B shows step response and load disturbance response for a system with a 𝑃𝑀 of 45°, 

respectively. 

 

FIGURE 14 The intersection points. (A) shows the intersection points for the system with the negative complex part, and (B) 

gives the intersection points for the system with the positive complex part. [Colour figure can be viewed at 

wileyonlinelibrary.com] 

 

FIGURE 15 The systems' step response and load disturbance reaction with 𝑃𝑀 = 45°. (A) shows step response and (B) load 

disturbance response for a system with a 𝑃𝑀 of 45°. [Colour figure can be viewed at wileyonlinelibrary.com] 



It is clear in Figure 15 that the 𝐼𝑂𝑃 has a greater steady-state intolerance if the controller did not 

include an integrator. The plant with the 𝐼𝑂𝑃 +  𝐼 (integrator) seemed to have the lowest steady-state 

error. With the 𝐹𝑂𝑃 +  𝐼, the settling time and overshoot time were enhanced even more. As a 

consequence, comparing the plants with and without integrator resulted that the 𝐹𝑂𝑃 +  𝐼 

demonstrated reduced system error and quicker system stability response under unexpected load 

disturbance signal. 

Let us study all the examples illustratively. The desired 𝜔𝑔𝑐 for the first example is 𝜔𝑔𝑐 = 1.5 rad/s and 

for the remaining are 𝜔𝑔𝑐 = 0.75rad/s. The 𝑃𝑀 is selected to be 45°. Bode diagrams of the systems in 

the examples are shown in Figure 16A,B as a general view and a closer view, respectively. 

In the figure, 𝑖 → corresponds to the 𝜔𝑔𝑐 and ← 𝑖 shows the 𝜔𝑝𝑐 of the ith case (the cases are 𝐼𝑂𝑃, 

𝐼𝑂𝑃 +1, 𝐹𝑂𝑃 + 1, 𝐹𝐶𝑂𝑃 + 𝐼 − 𝑗, 𝐹𝐶𝑂𝑃 + 1 +  𝑗, respectively). It can be seen in the figure that the 

®pc value is directly affected although the 𝑃𝑀 was not changed. The ®pc value of the system having 

negative complex conjugate is calculated to be smaller than the one having positive complex part. 

FIGURE 16 The Bode diagrams with 𝑃𝑀 = 45°. Bode diagrams of the systems in the examples are shown in as (A) a general 

view and (B) a closer view. [Colour figure can be viewed at wileyonlinelibrary.com] 

 

Starting from an 𝐼𝑂𝑃 and modifying the plant as the other forms, the Bode diagram gives clues about 

the changes in the behavior of the system with the changing value of the 𝜔𝑝𝑐. It is seen that, when 

compared with the 𝐼𝑂𝑃 + 1 system, the 𝜔𝑝𝑐 of the 𝐹𝑂𝑃 + 1 system is reduced, but the 𝜔𝑝𝑐 is 

increased with the 𝐹𝐶𝑂𝑃 +  𝐼 − 𝑗 case. The fact that the complex part does not cause a visible change 

in the 𝐺𝑀 of the system but yields to a significant variation in the PM further supports the complex 

number theory. The positive and negative values of the complex component are not limited to 

determining the position of the phase transition frequency only. It also shows that by increasing the 

negative values of the complex component, the phase curve of the system will be pulled up from the 

instability line and will increase the robustness of the system. Taking larger values causes the phase 

curve of the system to fall further below the instability line. 

 

12 CONCLUSION 

On the contrary to similar researches, the plant model with the most broad structure is used in this 

study, which focuses on the most realistic investigation of physical changes. The most significant 



contribution to the literature of this study is the contribution of complex plant models to system 

stability and robustness, as well as associated physical phenomena. It is preferred to use the classical 

proportional derivative controller to control 𝐼𝑂𝑃, 𝐹𝑂𝑃, and 𝐹𝐶𝑂𝑃 models in order to achieve this goal. 

Analyses of the above plants and their modifications having an integrator have been revealed the 

differences and advantages of the controller consisting of the proportional and derivative operators. 

Bode diagram restrictions are also used to develop the equations for the system stability and 

robustness. Simultaneously, the system’s response to unexpected load disturbances was explored. 

Finally, the findings and visuals were acquired under the same conditions in each of the four 

application cases presented, and the superiority of the systems to each other and their physical 

interpretations were addressed. Despite the fact that many studies in the literature include both 

integer and 𝐹𝑂𝑃s, we believe that this study covers all system types. The determinations and 

discussions, as well as the calculation formulae that are easily produced in this challenging field of 

study, can be considered of a quality that can be innovative. Different physical behaviors are predicted 

to arise and be interpreted in future investigations as the obtained parameters are changed. 
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