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ABSTRACT: Macroporous melamine/formaldehyde sponge was coated in situ during the 

oxidation of pyrrole with iron(III) chloride hexahydrate in aqueous medium. The reaction 

mixture contained a heteropolyacid, silicotungstic acid, which protonated polypyrrole. 

Polypyrrole/silicotungstate deposits were prepared either in globular form or as nanotubes. The 

resulting hybrid composites thus combine an organic conducting polymer with inorganic 

component known, e.g., for its proton conductivity and electrocatalytic activity. The specific 

surface area of all materials was of the order of tens m2g−1. The molecular structure is discussed 

on the basis of FTIR and Raman spectra. The resistivity of the sponges was recorded as a 

function of compression to 10 MPa and it decreased from the order of 10 Ω cm to 0.1 Ω cm. 

The sponges were tested in electromagnetic interference shielding and absorbed over 80% of 9 

GHz radiation frequency. Hybrid composite sponges were subsequently carbonized at 650 °C 

in inert atmosphere when they converted to a sponge-like macroporous carbons enriched with 

nitrogen atoms. Their resistivity increased by two orders of magnitude after this process. The 

absorption of electromagnetic radiation, however, fell below 10%. Original and carbonized 

hybrid sponges may be of interest in the construction of macroporous electrodes.         
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INTRODUCTION 

In the design of new materials, organic conducting polymers, e.g. polyaniline and 

polypyrrole, play an important role due to their electrical, electrochemical, and electrocatalytic 

properties [1–3]. Additional features outside their conductivity allow for the applications not 

associated with electrical parameters [4], such as in optical pH sensors [5], solar-driven steam 

generation [6], flame-retardation compositions [7] or in environmental issues, such as 

adsorbents for dye-pollution treatment of water [8, 9]. 

Heteropolyacids are mixed inorganic oxyacids of metals (typically tungsten and 

molybdenum) and non-metals (silicon, phosphorus). They are strong acids soluble in water that 

are able to produce salts with conducting polymers, i.e. to reprotonate non-conducting bases to 

conducting salts [10, 11]. Silicotungstic acid (SiW), also known as tungstosilicic acid, a 

member of polyoxometalate (heteropolymetalate) group, is a heteropolyacid of the general 

formula H4SiW12O40·n H2O having a characteristic Keggin structure. It is widely used as a 

catalyst of organic reactions [12] and displays properties valued in electrocatalysis of hydrogen 

evolution reaction as a mediator in production of hydrogen through water electrolysis at low 

current densities [13]. 

In order to prepare new functional materials, conducting polymers have often been 

combined with heteropolyacids. Concerning polyaniline, silicotungstic acid significantly 

delayed the oxidation of aniline and affected properties of resulting polymer [14] or altered 

polyaniline morphology [15]. Polyaniline silicotungstate was used in the catalysis of ethanol 

[16] or isopropanol conversions [17]. Polyaniline phosphomolybdate afforded corrosion 

protection of steel [18], was used for sensing of alcohol vapour [19], electrocatalysis of oxygen 

reduction reaction [20, 21], improved the capacitance of supercapacitors [22] and catalysed the 

synthesis of 2,5-diformylfuran from fructose [23] or the epoxidation of alkenes [24]. A 

corresponding phosphotungstate was similarly exploited for hydrogen peroxide generation 

[25], in a hydrazine [26] and humidity sensors [27] or for the production of conducting polyester 

fabrics. 

The literature on hybrids based on polypyrrole is less numerous. Polypyrrole 

phosphomolybdate was used in sensors [28, 29] and in electrochemical supercapacitor [30, 31]. 

Polypyrrole protonated with phosphotungstic acid was used for detection of sodium cations 

[32], in supercapacitor electrodes [33], protected steel electrodes from corrosion [34], displayed 

linear actuation [35], and improved the adhesion of conducting coatings on polyester fabrics 

[36–38]. The promising direction is envisaged in electrocatalysis of hydrogen evolution 

reaction [39]. 



3 

 

The combination of the conducting polymers with heteropolyacids is based on the ionic 

bonding because the conducting polymers are polycations that produce salts with anions of 

heteropolyacids [10, 11]. They are obtained as powders. The applications, however, often 

require materials with defined macroscopic structure and mechanical properties. The in-situ 

deposition of conducting polymers protonated with heteropolyacid, here polypyrrole 

silicotungstate, at macroporous melamine sponge carrier is demonstrated. The fact that the 

coating thickness of conducting polymers is enhanced in the presence of water-soluble tungsten 

compounds, including heteropolyacids, is exploited [38, 40]. Application in electromagnetic 

interference shielding in GHz frequency region is reported. 

The composites containing conducting polymers can be carbonized to nitrogen-

containing carbons [41]. This has recently been illustrated also for the polypyrrole-coated 

melamine sponges [42]. If the composites contain silicotungstate heteropolyacid, the carbons 

become enriched with tungsten atoms in addition to nitrogen ones [43]. The feasibility of such 

conversion is also demonstrated in the present study. The resulting macroporous carbons are 

suitable for the consideration especially in electrocatalytic applications.  

 

EXPERIMENTAL  

Preparation 

Commercial macroporous melamine-formaldehyde sponges (105×62×25 mm3; 

Figure 1) available as "miraculous" or "magic" sponge cleaners of Basotec type (BASF, 

Germany) were coated with polypyrrole in aqueous reaction mixture containing 0.1 M pyrrole 

(6.7 g L−1), 0.25 M iron(III) chloride hexahydrate (67.6 g L−1), and 0.005 M silicotungstic acid 

(14.4 g L−1). For the preparation of globular polypyrrole in 1 L of reaction mixture, pyrrole and 

heteropolyacid were dissolved in water to 500 mL of solution, similarly iron(III) chloride 

hexahydrate was dissolved separately to 500 mL of solution. Both solutions were pre-cooled to 

4°C to slow down the subsequent polymerization, mixed, and poured over the melamine 

sponges. The sponges were gently squeezed to assure their penetration with reaction mixture. 

The oxidative polymerization of pyrrole was left to proceed for 1 h, the sponges were then 

removed, transferred repeatedly to 0.1 M hydrochloric acid until no solids or coloured by-

products were released. The sponge was then immersed several times in ethanol to remove 

water, and left to dry at room temperature. The polypyrrole powder generated outside the 

sponges was collected and processed in the same manner. The deposition of polypyrrole 

nanotubes included in addition the presence of 0.15 wt% methyl orange sodium salt (1.5 g L−1) 

dissolved together with pyrrole. All chemicals were purchased from the Sigma Aldrich.  
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A part of the sponges was carbonized in a cylindrical furnace GSL-1600X MTI Corp., 

USA) under nitrogen atmosphere. Temperature cycle consisted of heating ramp at a 3.3 °C 

min−1 rate to 650 °C, at which sample remained for 15 min, followed by cooling to room 

temperature at a rate 3.3 °C min−1.  

 

Figure 1. Melamine sponge (a) before (left) and (b) after the deposition of polypyrrole in the 

presence of silicotungstic acid (right). 

 

Characterization 

Morphology was observed with an ultra-high-resolution scanning electron microscope 

MAIA3 (Tescan, Czech Republic). FTIR spectra were recorded with a Nicolet 6700 

spectrometer (Thermo-Nicolet, USA) using a reflective ATR extension GladiATR (PIKE 

Technologies, USA) with a diamond crystal in the 4000–400 cm–1 wavenumber range. The 

spectra were corrected for carbon dioxide and humidity in the optical path. 

Raman spectra were collected using a Thermo Scientific DXR Raman microscope 

equipped with 780 nm line. The spot size of the lasers was focused by 50× objective. The 

scattered light was analyzed by a spectrograph with holographic grating 1200 lines per mm, 

and a pinhole width of 50 μm. The acquisition time was 10 s with 10 repetitions.  

Nitrogen adsorption was used to determine specific surface area and pore volume with 

a NOVA3200 apparatus (Quantachrome Instruments) using a NovaWin software. Sponges 

were degassed at 100°C for 24 h. Brunauer-Emmett-Teller (BET) approach has been applied 

for the determination of specific surface area and Barrett-Joyner-Halenda (BJH) model for the 

volume of pores. 

The resistivity of sponges was determined by four-point van der Pauw method during 

the compression in a cylindrical glass cell with inner diameter 10 mm between an insulating 
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base and a glass piston carrying four platinum/rhodium electrodes on the perimeter. The set-up 

included a current source Keithley 220, a multimeter Keithley 2010, and a scanner Keithley 

705 along with a matrix card Keithley 7052. The applied pressure was controlled with L6E3 

load cell (Zemic Europe BV, The Netherlands). The sample thickness was monitored with a 

ABS Digimatic Indicator Mitutoyo, model ID-S112X.  

Electromagnetic radiation shielding of sponges was evaluated with a PNA-L Network 

Analyzer Agilent N5230A (Agilent Technologies, CA, USA) by waveguide method in the X-

band frequency range 8–12 GHz. The sample with the thickness of 10 mm was cut to perfectly 

fit the holder of 10×23 mm2 size.  

 

RESULTS AND DISCUSSION 

Preparation 

The content of polypyrrole with incorporated silicotungstic acid, 73.4 and 74.4 wt%, 

was determined from the increase of mass after the deposition of globular form and nanotubes, 

respectively. The apparent density of neat sponge calculated from the mass and geometry, 0.008 

g cm−3, increased to 0.022 g cm−3 and 0.032 g cm−3 after the deposition of globular and 

nanotubular polypyrroles, respectively. The content of inorganic part 45.9 and 47.8 wt%, 

corresponding roughly the incorporated silicotungstic acid, respectively, was determined as an 

ash. In the contrast to globular polypyrrole, which accompanied the sponges as a free powder, 

the adherence of nanotubes to the melamine skeleton is considerably better. The yield after the 

carbonization at 650 °C of sponges in inert nitrogen atmosphere was 41.2 and 44.6 wt% for 

globular and nanotubular coatings, respectively. 

 

Morphology 

The original skeleton of macroporous melamine [44] becomes coated with polypyrrole 

(Figure 2). Polypyrrole is deposited as a film on the individual threads, which is well visible at 

the higher magnifications. Polypyrrole globules adhere directly to this film, but are also present 

as clusters of free polypyrrole aggregates. These are only loosely attached to the melamine 

skeleton, and may be liberated during the sponge handling or compression. This manifest itself 

as in the contamination of the surrounding areas with a black polypyrrole powder, which may 

be undesired in practical applications.       
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Figure 2. Scanning electron micrographs of melamine sponge coated with globular polypyrrole 

in the presence of silicotungstic heteropolyacid taken at gradually increasing magnification 

(scale bars 100, 50, 10 and 2 μm). For the micrographs of original uncoated melamine sponge 

see Ref. [44].  

 

The situation is considerably improved if polypyrrole is produced as nanotubes instead 

of globules (Figure 3). Such nanostructure is obtained when the polymerization of pyrrole is 

carried out in the presence of methyl orange [45]. The nanotubes better adhere to the melamine 

scaffold due to their mutual entanglement. The nanotubular structure has been well established 

in the literature by transmission electron microscopy [45]. Polypyrrole nanotubes are also more 

conducting, their conductivity being at least one order of magnitude higher compared with the 

globular form. The macroporosity of the hybrid composite sponges is preserved as documented 

by the apparent density of the order 10−2 g cm−3.     
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Figure 3. Scanning electron micrographs of melamine sponge coated with polypyrrole 

nanotubes in the presence of silicotungstic heteropolyacid taken at gradually increasing 

magnification (scale bars 200, 50, 10 and 2 μm). 

 

 During the polymerization of pyrrole, polypyrrole is generated also in the medium 

outside the sponges (Figure 4). It is collected as a powder with either globular morphology of 

nanotubes.  
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Figure 4. Micrographs of polypyrrole powder produced in the presence of silicotungstic 

heteropolyacid outside the coated sponges: globules (left) and nanotubes (right). 

 

Surface properties 

It has already been reported that the specific surface area increased after the deposition 

of globular polypyrrole and even more with polypyrrole nanotubes as expected on the basis of 

morphology observed by the electron microscopy [9, 46] (Table 1). When the deposition was 

carried out in the presence of silicotungstic acid (Figure 5), the area was again reduced and the 

similar trend applies also to the pores volume (Table 1). The subsequent carbonization had 

practically no effect on the specific surface area for globular coating and caused its reduction 

in the case of nanotubular coating (Table 1). In all materials, the specific surface areas were of 

the order of tens m2g−1.       

 

Table 1. Specific surface area, S, and the pores volume, V, of melamine sponges coated with 

globular (G) or nanotubular (NT) polypyrrole in the presence of silicotungstic heteropolyacid 

(+SiW) before and after carbonization (/C).  

Sample S, m2g−1 V, cm3g−1 

Original spongea 39.2±0.6 0.067±0.007 

PPy-Ga 75.2±2.8 0.081±0.006 

PPy-G+SiW 41.6±3.8 0.051±0.002 

PPy-G+SiW/C 48.8±3.3 0.035±0.017 

PPy-NTa 65.5±4.7 0.130±0.004 

PPy-NT+SiW 60.6±3.3 0.073±0.005 

PPy-NT+SiW/C 26.4±3.9 0.029±0.003 

a Taken from Ref. [9].  
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Figure 5. Adsorption/desorption isotherms of polypyrroles deposited along with silicotungstic 

acid at melamine sponges. 

 

Spectroscopic characterization 

 In the ATR FTIR spectra of the both globular and nanotubular polypyrrole deposited in 

the presence of silicotungstic acid on melamine sponge (Figure 6a) we observed the main bands 

of polypyrrole situated at 1536, 1448, 1298, 1151, 1091, 1035, 968, and 853 cm–1 described in 

details in the literature [42, 44]. The peak typical for melamine sponge situated at 807 cm–1 is 

missing in the spectra. This indicates the complete coating of melamine threads with a 

conducting polymer. We observe the shoulders at 1017 and 905 cm–1 and a maximum at 769 

cm–1, which reflect the presence of silicotungstic acid in both samples.  

After heating to 650 °C in inert atmosphere, the spectra of both globular and nanotubular 

polypyrroles deposited in the presence of silicotungstic acid on melamine sponge are 

transformed into the spectra of carbon-like materials with two broad bands with local maxima 

at 1585 cm−1 and 1209 cm−1 (Figure 6a). Some additional maxima may correspond to the 

intermediate products of polypyrrole or melamine carbonization, or to the modified 

silicotungstic acid. 

Due to the strong resonance effect of the laser excitation 780 nm, we mainly observe in 

the Raman spectra of the both globular and nanotubular polypyrrole deposited in the presence 
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of silicotungstic acid on melamine sponge (Figure 6b) the bands of polypyrrole with maxima 

situated at 1593, 1492, 1374, 1237, 1088, 1055, 940, 687, 623, and 381 cm–1, described in detail 

earlier [42, 44]. The peaks of silicotungstic acid have not been detected in the spectra.   

After exposure to 650 °C, the Raman spectra attain a shape typical of carbon-like 

materials with typical two broad bands with maxima at 1593 cm−1 and 1343 cm−1. This proves 

that the polypyrrole coating was carbonized. 
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Figure 6. (a) FTIR and (b) Raman spectra of globular and nanotubular polypyrroles deposited 

on melamine sponge in the presence of silicotungstic heteropolyacid (green) and carbonized 

analogues (red). The spectrum of silicotungstic acid (SiW) is included.  
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Electrical properties 

The resistivity of the sponges under applied pressure has been determined in the 

experimental setup designed especially for this purpose. It has to be stressed that the resistivity 

is reported, i.e. the parameter characterizing the material as whole, and not just a resistance, 

which depends on the sample size and geometry. The resistivity of the sponges coated with 

polypyrrole is comparable for both morphologies (Figure 7), globules and nanotubes, despite 

the fact that the resistivities of polypyrroles with silicotungstic acid produced outside the 

sponges determined on compressed pellets, 0.26 and 0.022 Ω cm for globules and nanotubes, 

respectively, differ by one order of magnitude. Indeed, as a rule, polypyrrole nanotubes have 

always lower resistivity than globules [45].  

The resistivity of the polypyrrole-coated sponges decreased as the sponge was 

compressed and, consequently, volume fraction of conducting phase grew. The structure of 

polypyrrole-coated melamine sponges is bicontinuous. The connective melamine phase is 

responsible for the mechanical properties and integrity. Because the conducting polypyrrole 

phase has also the continuous character, there is no percolation threshold typical of conducting 

objects dispersed in a non-conducting matrix. The extrapolation of resistivity dependence to 

higher pressure approaches the value of neat polypyrroles compressed to pellets. 

The similar dependences for the carbonized sponges follow the same pattern but they 

are shifted to the resistivity about three orders of magnitude higher (Figure 7). As demonstrated 

below, this has a detrimental effect on the electromagnetic interference shielding but may be 

still sufficient when applied in macroporous electrode materials.         
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Figure 7. The pressure dependence of resistivity of globular polypyrrole or polypyrrole 

nanotubes deposited on melamine sponges (green) and their carbonized analogues (red). 

 

Electromagnetic interference shielding 

The deposition of conducting polymers, such as polyaniline and polypyrrole, has 

frequently been used to endow various support with the ability to reflect and/or absorb the 

electromagnetic radiation in GHz region [47–51]. They are responsible especially for the 

reflection contribution [47, 48] while the radiation absorption is small [44]. This was 

demonstrated also for the melamine sponges coated with polypyrrole, when the absorption 

component could be substantially increased by the introduction of ferromagnetic component, 

magnetite [44]. 

Any shielding of melamine sponge alone is marginal [44]. The coating with polypyrrole 

combined with silicotungstic acid provides a relatively small fraction of reflection, but the 

presence of heteropolyacid is responsible for the excellent radiation absorption, which still 

increases at higher frequencies (Figure 8). This presence of tungsten atoms organized in a 

Keggin structure is most probably responsible for this effect (Figure 9a). After the 

carbonization, which destroys the molecular structure of polypyrrole, the reflection contribution 

disappears (Figure 9b). The absorption is substantially reduced despite the residual presence of 

tungsten atoms but now in disorganized manner. Polypyrrole nanotubes provide the better 

reduction of transmittance than globules in the original samples due to their higher conductivity. 
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After carbonization, the level of transmission becomes high and about the same for both 

samples (Figure 9b), also but not only, as a result of increased resistivity (Figure 7). 
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Figure 8. Frequency dependence of the reflection (squares), transmission (circles), and 

absorption contributions (triangles) for the sponge coated with polypyrrole nanotubes in the 

presence of silicotungstic acid. 
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Figure 9. Reflection, transmission and absorption contributions at 9 GHz frequency for the 

sponges coated with globular polypyrrole or polypyrrole nanotubes in the presence of 

silicotungstic heteropolyacid. (a) Original sponges, and (b) the samples carbonized at 650°C. 

Sample thickness 10 mm. 

 

CONCLUSIONS 

The hybrid organic/inorganic lightweight macroporous materials with bicontinuous structure 

were prepared by the coating of threads in melamine sponges with polypyrrole in the presence 
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with silicotungstic acid. The are lightweight with apparent density 0.022 and 0.032 g cm−3, the 

content of polypyrrole silicotungstate was 73.4 and 74.4 wt% and the fraction of inorganic 

component was 45.9 and 47.8 wt%, i.e. their parameters are similar for the deposition of 

globular polypyrrole or polypyrrole nanotubes, respectively. The hybrid composites had 

resistivity of the order 10 Ω cm (i.e. the conductivity 10−2 S cm−1), which decreased by three 

orders of magnitude when the sponges were compressed at ≈10 MPa. The yield of macroporous 

nitrogen-containing carbon obtained after the carbonization of sponges was 41.2 and 44.6 wt% 

for both types of polypyrrole coatings. The absorption of electromagnetic radiation at 9 GHz 

frequency exceeded 80 % at 10 mm sample thickness for the original samples but was reduced 

below 10 % after the carbonization. The resistivity increased by about three orders of magnitude 

after carbonization and attained the order 102 Ω cm for compressed samples. Both the original 

hybrid materials and carbonized analogues are also likely to serve as novel macroporous 

electrode materials.   
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