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ABSTRACT 

Raman micro-spectroscopy technique offers a combination of relatively high spatial resolution with 

identification of components or mixtures of components in different sample areas, e.g. on the surface 

or the cross-section of a sample. This study is focused on the analysis of the tablets from 

pharmaceutical development with different technological parameters: (1) the manufacturing 

technology, (2) the particle size of the input API (active pharmaceutical ingredient) and (3) the 

quantitative composition of the individual excipients. 

These three mentioned parameters represent the most frequently solved problems in the field of 

reverse engineering in pharmacy. The investigation aims to distinguish tablets with the above-

described technological parameters with limited subjective steps by Raman microscopy. Furthermore, 

non-subjective methods of Raman data analysis using advanced statistical analysis have been 

proposed, namely Principal Component Analysis, Soft Independent Modelling of Class Analogy and 

Linear Discriminant Analysis. The methods successfully distinguished and identified even very small 

differences in the analysed tablets within our study and provided objective statistic evaluation of 

Raman maps. The information on component and particle size distribution including their small 

differences, which is the critical parameter in the development of the original and generic products, 

was obtained due to combination of these methods. Even though each of these chemometric methods 

evaluates the data set from a different perspective, their mutual application on the problem of Raman 

maps evaluation confirmed and specified results on level that would be unattainable with the use of 

only one them. 

Keywords: Raman mapping, multivariate analysis, tablets, Principal Component Analysis, Soft 

Independent Modelling of Class Analogy, Linear Discriminant Analysis 

 

  



1. Introduction 

The physicochemical properties of a dosage form affect the bioavailability of the drug product, which 

is one of the pharmacokinetic parameters driving the amount of drug in the active form in the systemic 

circulation and that is also crucial aspect in the development of new dosage forms or their generics. 

The generic drug is the equivalent of original medicinal product that contains the same active 

pharmaceutical ingredient (API), in the same type of dosage form, route of administration, safety, 

strength, quality and performance characteristics, and bioequivalence [1,2]. 

Reverse engineering/deformulation that is a complex process consisting of several phases, such as 

identification and quantification of formulation components, is used at the beginning of the 

development of a generic drug product. Another stage of reverse engineering is characterisation of 

the API, which can be divided into several levels: (1) molecular level, (2) particle level and (3) bulk level 

that has been described in the publication [3]. It would be the most appropriate to use the same form 

of API as the original product to ensure the same stability and dissolution profile [3]. In most cases, 

this strategy is blocked by the patents protecting the form of API used in the drug formulation [3]. 

Therefore, generic companies are forced to develop an alternative form of the same API for their 

product that may exhibit different physical and chemical properties. Particle size distribution (PSD), 

mainly of API, directly affects dissolution rate and bioavailability in the case of poorly soluble molecules 

[4], specifically for compounds of class II and IV of BCS (Biopharmaceutics Classification System) [5]. 

Thus, PSD must be taken into consideration to achieve the required similarity between the generic and 

the original product [6]. 

 

Table 1 The summary of the differences between the tablet formulations and their batches. 

 

Reverse engineering is a useful tool for generic product development to achieve bioequivalence and 

stability of a drug product. The appropriate reverse engineering strategy, which includes decoding the 

qualitative and quantitative composition of the original medicinal product, characterization of the API 

and manufacturing process, can reduce development time and costs. Furthermore, the reverse 

engineering can be applied to improve API properties, minimise drug side effects, improve the 

composition and design of the product, identify defective or contaminated products. The development 

of pharmaceutical formulations requires a combination of analytical techniques, e.g. chromatography, 

X-ray diffraction, dissolution techniques as well as spectral methods. Raman microspectroscopy is an 

important technique in the reverse engineering process. The combination of chemometric methods 

with Raman mapping/imaging has allowed to visualise the distribution of the component [7,8,9,10] or 

study the interaction of API and excipient [11,12], as well as the mapping of the occurrence of different 

polymorphic forms [13,12,14] and stability during storage [15] of the solid dosage forms. It has also 

been applied to characterization of homogeneity [16,17,18] or identification of contamination [19,20], 

the analysis of tablet production technologies [21], when studying particle size [22,23] or 

determination of low API concentrations [24,25], in the study of morphology [26] and other 

physicochemical properties of the dosage form. 

Our study is focused on the reverse engineering of several tablets from pharmaceutical development 

using Raman micro-spectroscopy. A comparison of the obtained Raman maps to assess, whether the 



distribution of components is identical, similar, or completely different, might be challenging. The 

image analysis has often been used for such comparison, however, it depends on the subjective 

evaluation of the obtained Raman maps. The new procedure has been proposed for non-subjective 

assessment of Raman maps using Principal Component Analysis (PCA) [27,28,29] as a descriptive 

method and classification methods, particularly Soft Independent Modelling of Class Analogy (SIMCA) 

[30,31] and Linear Discriminant Analysis (LDA) [32,33]. Above-mentioned multivariate chemometric 

methods look at the data sets or Raman spectra from a different point of view. As for the information 

obtained from these statistical methods, they should match. PCA enables to reduce the dimensionality 

and minimises information loss [34]. Contrary to LDA and SIMCA methods, PCA calculation does not 

need training data set (so-called prediction model). PCA and LDA are partly similar, because they both 

examine linear combination to evaluate the data sets. PCA creates new uncorrelated variables called 

principal components and preserves maximum variance [35], whereas LDA finds a new space direction 

to project the data in order to maximise classes separation [36]. On the other hand, SIMCA is a class-

modelling method like LDA but it is based on disjoint PCA, i.e. PCA is performed on each of the 

predefined classes from the prediction model [37]. The soft modelling allows to classify complex 

systems and samples that belong to more classes (samples can be assigned to more classes) which is 

the advantage over LDA. 

The aim of the present research is the use of Raman microspectroscopy as a tool for the study of 

technological parameters of the pharmaceutical tablets using chemometric analysis. The tablets with 

different technological parameters were studied: (1) the manufacturing technology, (2) the particle 

size of the input API and (3) the quantitative composition of the individual excipients. The results show 

that the developed procedure involving Raman microspectroscopy analysis and consequent statistic 

evaluation can clearly reveal even small differences in formulations of tablets. The seemingly minor 

differences can have a significant impact on the behaviour of the tablet in solution, its disintegration 

and subsequent release and dissolution of API from the formulation. These factors are crucial in the 

development of a new generic tablet. 

 

2. Materials and methods 

2.1. Materials 

Experiments were performed on three pairs of batches of pharmaceuticals tablets with different 

technological parameters. The tablets were provided by pharmaceutical company Zentiva, k. s., Czech 

Republic. Individual tablet components were of pharmaceutical quality. Each pair of tablets mutually 

differed by a specific technological parameter such as manufacturing technology, particle size of the 

input active pharmaceutical ingredient (API) and quantitative composition of tablets. 

 

2.2. Tablet formulation 

Individual tablets were manufactured under the good manufacturing practice procedure. Tablets of 

formulation type A, B and C are used in several indications including HIV/AIDS, treatment of 

inflammation or pain (non-steroidal anti-rheumatics) and reduction of thrombotic complications in 

cardiovascular events, resp. The first pair of batches labelled A had the same quantitative composition, 

although the batches 1A and 2A differed in the manufacturing technology. Formulation A contained 

two APIs and five excipients. The batch 1A was manufactured by mixing granules of both APIs, whereas 

the batch 2A was prepared from two different forms of APIs, i.e. granules (API-1) and powder (API-2). 



The granulation process of APIs was the wet granulation in both cases. Formulation B contained one 

API and six excipients. This second type of tablets, 1B and 2B, had the same qualitative and quantitative 

composition. They were produced by the same technology but differed in particle size of the input API, 

which was d90 = 81 μm and d90 = 50 μm for batches 1B and 2B, resp. The third type of tablets, C, 

consisted of one API and three excipients of different quantitative proportion in two batches 1C and 

2C. 

The technological parameters of the tablet formulations and their batches are summarised in Table 1. 

 

2.3. Tablet preparation for analysis 

The representative tablet cross-sections were prepared for following analyses. The tablets were cut 

lengthwise using a scalpel (sc); manual cut. The tablets were also prepared in the form of a paraffin 

block and cut transversely by microtome (mc; microtome cut). Commercial Paraplast bulk (Leica 

Biosystems, Germany) was used to prepare paraffin blocks with tablets. The prepared blocks were 

allowed to solidify at room temperature and then the tablet in a paraffin block was cut with a 

microtome (Leica RM2265, Leica Microsystems, Germany). 

The two tablets from each batch of formulations A, B and C were cut to obtain cross-sections suitable 

for analyses. Tablets prepared this way were placed on a glass slide which was inserted into the sample 

compartment equipped with a software-controlled motorised xyz stage and subjected to Raman 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Raman maps of formulation A; longitudinal cut with a scalpel - A) batch 1A, B) batch 2A and transversal cut with 

microtome - C) batch 1A D) batch 2A 



2.4. Raman micro-spectroscopy 

The cross-section of tablets was analysed on a dispersive inVia Reflex Raman microscope (Renishaw, 

UK) with an integrated Leica microscope. Raman microscope was operating with the Peltier-cooled 

CCD detector (Renishaw RenCam, 1040 x 256 pixels) and controlled by Wire 4.1 (Renishaw, UK) 

software. Raman spectra were collected using NIR laser with excitation wavelength of 785 nm in a line 

arrangement with the objective 5x (NA 0.12). Raman mapping was performed in StreamLine mode. 

Spectra were acquired in the range 1800 - 730 cm-1. The size of the map was adjusted according to the 

real size of the tablet. The approximate map size was 625 x 620 pixels with x, y-step size 56.7 μm. The 

exposure time was 1 s and laser power was set up to 100%. The spectra of the C type formulation had 

contained a high noise level at an exposure time of 1 s. Therefore, the accumulation time was increased 

to 3 s to achieve a compliant signal-to-noise ratio for the C formulation. 

 

2.5. Data evaluation and chemometric methods 

Data sets of Raman spectra were processed to the chemical maps. The maps were created using the 

chemometric method Direct Classical Least Squares (DCLS) in the Wire programme (4.1, Renishaw, 

UK). The principle of creating Raman maps by DCLS was described in our last publication [39]. 

The challenge was to process the tens of thousands of spectra contained in each map to chemometric 

evaluation. For this reason, the in-house built programme Spectra Helper [39] has been designed and 

implemented to spectra processing. The Raman spectral sets were converted to an appropriate format 

(*. CSV) and averages spectra systematically. From each Raman map, we obtained 800 averaged 

spectra. In total, 12 tablets cross-sections were compared, which involved 9600 spectra (e.g. 

1A_sc_sp1, 1A_sc_sp2, 2A_sc_sp1, 2A_sc_sp2, 1B_sc_sp1, 1B_sc_sp2, 2B_sc_sp1, 2B_sc_sp2, 

1C_sc_sp1, 1C_sc_sp2, 2C_sc_sp1, 2C_sc_sp2). The spectra were processed by three multivariate 

chemometric methods, PCA, SIMCA and LDA, in the programme The Unscrambler X (10.5, CAMO 

Software AS, Norway) and in a free software R. The whole sets of spectra (800 x 12 spectra) were used 

for PCA. The NIPALS (Non-linear Iterative Partial Least Squares) algorithm, cross validation and 95% 

confidence intervals were set within PCA calculation. In case of SIMCA and LDA training data (spectra) 

of each tablet cross-section were needed for calculation of the prediction model. For this purpose, half 

of each spectral set (400 x 12 spectra) was used as predictive and the remaining half (400 x 12 spectra) 

as classification spectra. All three methods evaluated the same data. Generally, SIMCA performs PCA 

on each data set of the calibration set. SIMCA as PCA uses cross validation criterion. The PCA calibration 

sets were calculated under the same conditions as for the stand-alone PCA. Before calculating the LDA, 

it is necessary to define a category variable and create a classification model. LDA use linear method 

(Fisher’s linear discriminant) for calculation. 

 

3. Result and discussion 

3.1. Analysis of Raman maps 

In all cases of tablets with different technological parameters, Raman maps were measured from 

longitudinal and transversal cross-sections of tablets prepared with a scalpel and a microtome, 

respectively. 

The first type of tablet formulation A contained two APIs. The distribution of components is 

distinguished by the colours in the Raman maps; the red colour represents API-1 and magenta colour 



stands for API-2. Both tablets consisted of approx. 73% of APIs. The most abundant excipient (EX-1) 

representing 20% of the tablet composition is displayed green in the maps. Other excipients were 

present in very small amounts ranging from 4% to 0.4%, therefore, we do not observe them in the 

Raman maps. Batches 1A and 2A were prepared by different manufacturing technology (see chapter 

2.2. Tablet formulation). 

The representation of the individual components in the map of both batches is very similar (Fig. 1). In 

the longitudinal cross-section of tablet 1A (Raman map Fig. 1A), API-1 and API-2 are observed to form 

distinct particle clusters. This indicates that both APIs were prepared with the same technique, in this 

case by wet granulation. Whereas, API-2 in the tablets of batch 2A (Fig. 1B) was distributed more 

evenly and did not form clusters of significant size. This can be attributed to the powder form of API-2 

mixed in the granulate of API-1. The space between the APIs is filled with the EX-1 similarly in both 

cases. This fact is less pronounced in the Raman maps of tablets cut transversely with a microtome 

(Fig. 1C and D). This is probably due to the smaller cross-sectional area of the tablets. Despite this fact, 

a clear difference in particle cluster size of API-2 can still be observed corresponding with its 

manufacturing process. 

The tablet formulations B differed in the input particle size of the API. API is represented in yellow in 

the maps. The two most abundant excipients EX-1 and EX-2 were shown in magenta and green. Batches 

1B and 2B had different distribution of API (Fig. 2A and B longitudinal cross-section, C and D transversal 

cross-section). In the map of batch 1B (Fig. 2A), the API aggregated into larger clusters homogeneously 

distributed in the tablet. In contrast, the API of batch 2B created more small clusters in the Raman map 

(Fig. 2B). However, the fact that the size of the clusters is not necessarily related to the input particle 

size as large clusters can contain either large or small particles, the difference in batch 1B and 2B is 

evident and indicates that smaller input particle size has led to creation of smaller API clusters in the 

tablet. Moreover, it seems that the smaller clusters of API in 2B have facilitated a creation of larger 

clusters of both excipients. Due to the porosity of tablets B (uncoated tablets), paraffin penetrated 

their surface partially and it was difficult to evaluate transversal cross-section (black places - paraffin) 

of these tablet maps by Raman software (Fig. 2C and D). In Raman maps on Fig. 2C and D, we can only 

observe the centre of the tablet, which is not sufficient for proper tablet assessment. Therefore, it is 

not possible to visually evaluate the technological parameters on these maps. 

The third type of tablet with formulation C differed in the quantitative composition of the individual 

excipients, and in the total weight of the tablets. Although API was added in equal amounts to both 

batches, an overall tablet weight of batch 2C was more than 50% higher than the weight of tablets of 

batch 1C. The excipients formed about 60% of tablet (API 40%) and 87% of tablet (API 13%) of batch 

1C and 2C, respectively. The obtained Raman maps of batch C are given in Fig. 3. API is represented in 

yellow and the two excipients EX-1 and EX-2 are shown in green and red colour, respectively. The 

higher API percentage is apparent from Raman maps of batch 1C (Fig. 3A and C), which is evident from 

both a longitudinal and a transversal tablets cross-section. The smaller amount of API, based on the 

total weight of the tablet, is observed in the map of tablet 2C (Fig. 3B and D). In both cases (batches 

1C and 2C), a proportional increase/decrease of the green-labelled EX-1 and red-labelled EX-2 can be 

observed. Raman maps thus correspond to the amount of API as well as excipients in the tablets. 

 

3.2. Statistical multivariate methods 

To assess the similarity or difference of Raman maps without a subjective analysis, a procedure using 

PCA and classification methods, specifically SIMCA and LDA, was proposed. The Raman spectra of 

tablets cross-section with different technological parameters were processed and compared. The 



extracted Raman spectra from Raman maps were processed in our in-house built programme Spectra 

Helper as shown in our last publication [39]. The newly processed data contained 800 Raman spectra 

averages per map, see chapter 2.5. Data evaluation and chemometric methods. 

Raman maps of microtome cut tablets were difficult to interpret, e.g. in case of tablets of formulation 

B. Therefore, the statistical results were focused only on the spectra measured from the longitudinal 

cross-section tablets cut with a scalpel. Statistical results of microtome cross-sections of tablet A, B 

and C are presented in the supplementary data. The results obtained from the microtome-cut 

transversal cross-section (PCA - Fig. S1, SIMCA - Table S4, LDA -Table S6) were similar to the results 

gained from scalpel-cut crosssections. 

 

3.2.1. Principal component analysis 

PCA method allows data analysis without prior comparison with prediction classes. The importance of 

the original variables (their contribution rate) is presented by the spectral loadings and projection of 

objects (spectra) along the new PCs (Principal Components) in the so-called PC score plots. 

PCA calculations were carried out for comparison of particular batches of test tablets sets. The PC score 

plots of tablets with formulations A, B and C are shown in Fig. 4. The average spectra in PC score plots 

of different tablet batches are represented by dots while individual batches are distinguished with 

colours. The first principal component (PC-1) for all three formulations describes the most variability 

in the data (corresponding to the technological parameters); 95%, 81% and 100%, for formulations A, 

B and C, resp. The second principal component (PC-2) of formulation A and C describes only a very 

small part of the overall data variability. The exception is the formulation B with higher PC-2 value 13%. 

The information about the origin of the main influence of distribution points in PC score plot was 

obtained from PC-1 loading, which is similar to the spectrum of the API in all cases of formulations A, 

B and C. The spectra of formulation A labelled with dark blue and red colour dots in the PC score plot 

(Fig. 4A) belong to the batch 1A and dots of the lighter colours belong to spectra of batch 2A. The 

average spectra (tablet samples of each batch; sp1 and sp2) of a batches 1A and 2A form separate 

clusters. Distance between the clusters is the smallest of all tested tablet formulations because the 

tablets 1A and 2A had the same composition. 

The dark green and dark red dots in the score plot (Fig. 4B) indicate the average spectra of batch 1B 

and the light shaded dots represent the spectra of batch 2B. The calculated PC model distances for 

these batches (Fig. 4) are higher than for batches of formulations A. The formulation B has different 

arrangement of score plot in comparison with A and C with clusters separated into the upper and lower 

part of the plot. The PC loadings explain this separation (Fig. 5). PC-1 loadings show (Fig. 5A) that the 

first principal component has the same course as the API Raman spectrum. These loading-spectra are 

overlaid and highlighted in red (Fig. 5A). It can be seen that the courses of PC-1 loadings of batches 1B 

and 2B are identical. PC-2 loading (PC-2 13%) course contains some bands that can be also assigned to 

the API (Fig. 5B). This indicates that PC-2 has in case of different API's particle size distribution influence 

that is not negligible and therefore encourages the separation of batches (dots in score plot) of 

formulation B. For other formulations the effect of PC-2 is not pronounced substantially because its 

value reached 3% or less than 1% of overall variability for A and C, respectively. This implies that the 

individual clusters of average spectra 1B and 2B are more different from each other than the clusters 

of the averaged spectra obtained for formulation A and C. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Raman maps of formulation B; longitudinal cut with a scalpel - A) batch 1B, B) batch 2B and transversal cut with 

microtome - C) batch 1B D) batch 2B. 

 

The last tablet type of formulation C differed in the quantitative composition. In the score plot (Fig. 

4C), the spectra (dots) of individual batches are divided into two clusters, as in the previous cases. Dark 

violet and green dots represent the average spectra of batch 1C and analogously their light shades 

batch 2C. The spectra of batch 1C are more variable than 2C spectra, clusters of which are more 

compact. The spectra of both batches C showed strong fluorescence that could not have been 

minimised. Nevertheless, the vibration bands belonging to the API are observed in the PC-1 loading. 

Therefore, API amount in the tablets (API 1C 40% and API 2C 13%) has the most significant influence 

on the distribution in the score plot. 

 

3.2.2. Soft independent modelling of class analogy 

SIMCA method allows to classify spectra into predefined groups (prediction model) and calculate 

distances between data. SIMCA does not search for differences between classes but it describes the 

similarities between the samples within a class. The mutual distances between the individual tablet 

formulations of their batches with different technological parameters, computed from the PCA 

models, were calculated using the SIMCA. The average spectra (800 spectra per map) of the tested 



tablets were divided exactly in to two halves. Individual PCA models (prediction model) were 

constructed from the 400 average spectra per map for each tested tablet, e.g. 1A_sc_sp1, 1A_sc_sp2, 

2A_sc_sp1, 2A_sc_sp2 (sample, sp; scalpel cut, sc) etc., see chapter 2.5. Data evaluation and 

chemometric methods. The remaining part of the spectra was used as classification spectra. Outliers 

(spectra) were excluded in the prediction model and classification spectra and the model was 

recalculated without these outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Raman maps of formulation C; longitudinal cut with a scalpel - A) batch 1C, B) batch 2C and transversal cut with 

microtome - C) batch 1C D) batch 2C. 

 



The typical output of SIMCA calculation is a table of distances to individual PCA classes, e.g. tablets 

formulation A, B and C. The distance values, for the first 10 spectra, are highlighted in shades of red, 

blue and green for tablets A, B and C, respectively, in Table S2. The distances between tablets of the 

same batch sp1 and sp2 are close to one, for example 1.2, 1.3, 1.4 or 1.5 (Table S2). This means that 

the samples are almost indistinguishable, because PCA models (tablet spectra) are similar. The 

exceptions are tablets 2B_sc_sp1 and sp2, which have a slightly higher mutual distance, namely 2.2. 

Histogram graphs of distances between PCA models (Fig. 6) were also generated for better orientation 

in SIMCA results. Since the distances, respectively the differences for example between the tablet 

formulations A and C are in the thousands, therefore, for clarity, the distances in the histograms were 

defined only in the range 0-100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Component score plots of PC-1 and PC-2 for tablet formulations A, B and C - scalpel cut (sc) longitudinal cross-

section, two samples of each batch; A) batch 1A and 2A, B) batch 1B and 2B, C) batch 1C and 2C.  



The title of each graph (Fig. 6) shows the PCA model which all tablet samples were compared with. As 

in the case of distances in the Table S2, a low value (small height of the histogram) indicates similarity 

to the model, and high values indicate a large distance, i.e. the largest differences. Fig. 6 shows the 

distances for all formulations and batches of tablets A, B and C, but only for their samples 1 (sp1). The 

results for samples 2 (sp2) are identical and are given in the supplementary data Fig. S3. The histogram 

SIMCA calculation also confirmed that two tablets of the same batch (sp1 and sp2) cannot be 

distinguished, because their distances were very small. The low distance values within one batch of 

tablets were expected because the individual tablets of a single batch should be identical. 

From the perspective of individual A and B formulations, all spectra were classified correctly according 

to the batches. In the case of 1C and 2C batches, occasional classification to the correct and incorrect 

class occurred simultaneously within the formulation C. 

Fig. 5. Comparison of A) PC-1 loadings of the batches 1B and 2B, B) PC-2 loadings of the batches 1B and 2B with Raman 

spectra of corresponding API. 

 

The ambiguity is due to the significant fluorescence in the spectra of 1C and 2C batches. In terms of 

distances between individual formulation models, the smallest difference in distances is in formulation 

A and C. These low distances are caused by formulation A (Table S2 A) in that the tablets have the 

same composition and they differ in the manufacturing technology of API. The formulation C (Table S2 

C, Fig. 6 1C_sc_sp1, Fig. 6 2C_sc_sp1) on the contrary, they differ in quantitative composition but the 

fluorescence in the spectra affects the classification and thus the distance between the tested batch 

groups. The substantially higher distances (19.3 - 26.8) between batches B indicates that the input 

particle size influenced preparation and thus the tablet composition. When comparing all A, B and C 

formulations mutually, the classification to each category was correct. The individual formulation 

models differ from each other by the high PCA distance values, see Table S2. 



Fig. 6. Histogram SIMCA distances between PCA models of tablets with formulation A, B and C for sample 1 - scalpel cut. 

 

3.2.3. Linear discriminant analysis 

LDA, like the SIMCA method, belongs to classification methods that use the so-called primary 

classification, for sorting spectra into predefined classes. The discriminant function values were 

calculated for 400 of the 800 average spectra per map of each tested tablet separately, see chapter 

2.5. Data evaluation and chemometric methods. Based on the discriminant function values, the spectra 

were classified to primary classes (prediction classes). The classification spectra, the other 400 spectra 

per map, were classified based on the most similarity to the primary classes (smallest distance). 

In our case, a linear method was used to calculate discriminators. Like in the case of the SIMCA 

classification, all spectra of A and B formulations were correctly assigned to classes. Occasionally, 1C 

batch was classified as 2C batch, due to significant fluorescence in spectra. The LDA method points out 

the similarity or homogeneity of individual tablets within the same batch. Therefore, the samples sp1 

and sp2 were classified incorrectly in the same batch very often. The obtained results of the first 10 

classified spectra from each formulation and tested batches are shown in Table S5. The first column of 

the table shows the names of the tested spectra according to the formulation and the batch which 

they belong to. In the next columns calculated distances with the given classes are listed. The last 

column shows the name of the class to which the spectrum was assigned according to the calculated 

LDA distances. 

The values of discriminators between particular batches (1A and 2A, 1B and 2B, 1C and 2C) are lower 

compared to the discriminators values of tablets formulations (A, B and C). The formulation A had the 

same quantitative composition and a similar component distribution in tablets, therefore, batches 1A 

and 2A have only slightly differed, as with previous statistical calculations. The value of discriminators 



1A and 2A is only approx. ± 1. Despite this fact, the LDA method has classified the batches 1A and 2A 

correctly. The higher differences in discriminator values are between batches B (approx. ± 10) and the 

largest between batches C (approx. ± 30). These tablets differ more in the distribution of the 

ingredients and, in the case of batch C in the quantitative composition. 

Classification methods such as SIMCA and LDA have significantly contributed to the distinguishing of 

tablet formulations, even though each of the methods uses a different procedure to classify the 

spectra. SIMCA is based on PCA and its advantage is that it can identify samples that belong to multiple 

classes, i.e. overlapping classes. In contrast, the LDA search a linear combination that characterises a 

class or distinguishes classes/samples from each other. Very low distance between spectra found by 

SIMCA and LDA indicates that tablets 1A and 2A are similar, which agree with the fact that they were 

of the same composition but different manufacturing procedure. Another determined parameter was 

the particle size of the input API of formulation B. Particle size distribution analysis is classically 

performed from disintegrated tablets (e.g. microscopically or by laser diffraction). However, the 

different distribution of API with different particle size has been clearly observed in the Raman maps 

of B. The spectra of batches 1B and 2B were well distinguished from each other by statistical analysis. 

The results of SIMCA and LDA methods of both batches B have revealed the largest differences in 

distances compared to other batches, which indicates that the input particle size of API influenced the 

preparation of tablets. The formulation of C differed in the quantitative composition and in the total 

weight of the tablets. The spectra of batches 1C and 2C were loaded with fluorescence. However, most 

of the spectra were classified by SIMCA and LDA to batch 1C or 2C correctly. 

 

4. Conclusions 

Our work provides comprehensive information on the possibilities of analysis by Raman microscopy 

with advanced chemometrics used to distinguish several pharmaceutical tablets with different 

parameters; represented the most solved problems in the field of reverse engineering in pharmacy. 

The Raman technique with advanced chemometric methods enables to distinguish formulations with 

a very close composition, a similar distribution of components and particle size distribution of API. 

Even very small differences may have a significant effect on the overall behaviour of tablets, for 

example, in disintegration and dissolution of tablet to release and dissolve API from a formulation. The 

classic example for the use of this combination of Raman technique with advanced chemometric 

processing is in the development of a new generic tablet, or in the detection of counterfeit [38] 

medicines. The next steps of our investigation involve a testing of the usability of the chosen technique 

not only on real tablets from development, but also on the tablets from the production and the market. 

The advantage of the use of Raman mapping technique for non-subjective data evaluation is that we 

work and study with the whole tablet formulation. The samples do not need to be modified 

significantly, separated, or disintegrated in order to obtain information about the tablet production 

parameters. The main novelty is a unique combination of objective evaluation of Raman maps for 

reliable distinguishing of similar tablets by several chemometric methods and the evidence that this 

approach is suitable for practical application in pharmaceutical R&D. 

PCA analysis was used in the study as independent method that allows to categorise the sets of data 

based on the largest variability, such as the different parameters, and transform them into the principal 

components. The method allows to organise data in a multidimensional space without minimal loss of 

information. The classification methods SIMCA and LDA were used to verify the accuracy of the results, 

so that the data were grasped from different point of view. The individual technological parameters of 

formulations A, B and C were recognized from Raman maps of tablet cross-sections and from the 



results of advanced chemometric methods. PCA has successfully distinguished all tested tablets 

produced with different parameters; namely by PC-1, PC-2 and PC-loading that described the highest 

variability corresponded to the API (e.g. form, particle size and amount of API). Moreover, the 

classification methods SIMCA and LDA have been able to identify tablet composition or distribution of 

components from calculation of distances between spectra of different tablet batches. Based on the 

experience from these analyses, the methods are applicable in reverse engineering. 
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