
Analyzing Correlation of the relationship between
Technical Complexity Factors and Environmental

Complexity Factors for Software Development Effort
Estimation

Ho Le Thi Kim Nhung1, Vo Van Hai1 and Huynh Thai Hoc1

1 Tomas Bata University in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511, Zlin
76001, Czech Republic

{lho, vo_van, huynh_thai}@utb.cz

Abstract. In this paper, a new method called Correlation-based Feature Selection
in Correction Factors is proposed. The method is based on the feature selection
method used in software development effort estimation to reduce redundant
correction factors. In this paper, the impact of correlation-based feature selection
on the method's estimation accuracy is investigated. Multiple linear regression
was used as the basic technique for the correction factors preprocessed by the
feature selection method. The results were evaluated using six unbiased accuracy
measures through the 5-fold cross-validation over the historical dataset. The
proposed method leads to a significant improvement in estimation accuracy by
simplifying the evaluation of correction factor values in the use case points
method, thus increasing the usefulness of the proposed method in practice.

Keywords: Software Development Effort Estimation, Use Case Points, Correlation-
based Feature Selection, Multiple Linear Regression.

1 Introduction

Software Development Effort Estimation (further only SDEE) is a critical factor in the
early stages of the software development life cycle. SDEE can help project managers
make early software development decisions, i.e., to prepare the necessary project plan
and budget within the expected completion time [1], [2]. The application of appropriate
SDEE methods determines the success or failure of a software project. In this context,
various approaches have been proposed and evaluated to address this problem. SDEE
approaches can be categorized as expert judgment, parametric techniques, and machine
learning techniques [3].

The Use Case Points (further only UCP) method can be used as a functional size
metric in the early stages of the software lifecycle [4]. The UCP method is based on a
Use Case Model (further only UCM) structured scenario and actor analysis. The
method estimates effort based on software size and fixed productivity factors (20
person-hours). However, the original UCP method was analyzed for its low precision
[5]-[8]. Combining ML techniques to produce SDEE models based on the original UCP
formula could be a method to improve accuracy. Some estimation approaches [9]-[18]
have also explored variant models, especially the use of statistical regression or ML

2

models to obtain better effort estimation based on historical data. The benefits of using
UCP-based effort estimation methods are numerous. These methods have made many
advances in reducing the influence of human error during UCM analysis and
simplifying the original principles of UCP. We recently conducted a literature review
on UCP-based SDEE methods in the context of system development [19]. This review
highlighted that there are some challenges in estimating the components of UCP,
especially the correction factors - which are thirteen technical complexity factors (TCF)
and eight environmental complexity factors (ECF). According to Luis et al. [20], a
small variation in the weighting value of the correction factors can dramatically affect
the software size. Nassif et al. [21] also pointed out the need to refine correction factors
that are directly related to estimates computed by the UCP method.

In the UCP method, not all correction factors are crucial for finding the hidden
knowledge among the important data. In many cases, some of the factors under
consideration are irrelevant and unnecessary. By selecting appropriate subsets of
correction factors, we can reduce the complexity of the UCP method and UCP-based
SDEE methods. The motivation for us to evaluate whether or not the influence of the
feature selection method on correction factors improves the accuracy of the UCP
method. To address these issues, this paper proposes the Correlation-based Feature
Selection in Correction Factors (named CFSiCF) method for SDEE. We evaluate the
construction of correction factors based on the machine learning technique
preprocessed with a feature selection method. The method used is the Correlation-based
Feature Selection (further only CFS) [22], [23]. The Multiple Linear Regression
(further only MLR) technique is chosen as the base method for the selected correction
factors to minimize human error's influence during the analysis of these factors. The
research questions are answered as follows:

● RQ1: What is the correlation and benefit of the number of technical
complexity and environmental complexity factors for size estimation?

● RQ2: Is the proposed method more estimation accurate than the UCP method
and other tested methods?

The main contributions of this study are:
● Evaluating the construction of the best correction factors based on MLR

models preprocessed with the CFS algorithm.
● The results achieved by the proposed method are compared with three tested

estimation methods to verify their accuracy. The methods are run on the
dataset of projects from three data donators. The project by each data donator
differs in size (measured in UCP). Unbiased evaluation measures (8-13) were
used to evaluate the accuracy of the methods.

The rest of the article is organized as follows: Section 2 introduces the background of
the methods used. Section 3 describes the research methodology. Section 4
demonstrates the experimental evaluation. Finally, Section 5 concludes the paper and
suggests future work.

3

2 Background

2.1 Use Case Points

The UCP method was introduced by Karner [4] to estimate the size of object-oriented
software projects. The UCP method is calculated by computing four basic size metrics
- Unadjusted Actor Weight (UAW), Unadjusted Use Cases Weight (UUCW), Technical
Complexity Factors (TCF), and Environmental Complexity Factors (ECF), as shown in
Eq. (1).

 𝑈𝐶𝑃 = (𝑈𝐴𝑊 +𝑈𝑈𝐶𝑊) × 	𝑇𝐶𝐹	 × 	𝐸𝐶𝐹 (1)

The UAW is calculated by taking the weighted sum of the number of actors in each
type, as shown in Eq. (2). The actors are classified based on their complexity (see Table
1).

 𝑈𝐴𝑊 =	∑ 𝑎! ×𝑤!"
!#$ (2)

where, 𝑎! is the number of actors in the 𝑖%& actor type and 𝑤! is the associate complexity
weight for each type.

The UUCW is calculated by taking the weighted sum of number of use cases as
shown in Eq. (3). The use cases are classified based on the number of transactions in
the use case (see Table 2).

 𝑈𝑈𝐶𝑊 =	∑ 𝑢𝑐' ×𝑤'"
'#$ (3)

where, 𝑢𝑐' is the number of use case in the 𝑗%& use case type and 𝑤' is the associate
complexity weight for each type.

The TCF is calculated from thirteen factors representing the complexity of software
projects, as shown in Eq. (4). Table 3 presents the technical factors as defined in the
UCP.

 𝑇𝐶𝐹 = 	0.6 +	(0.01	 × ∑ 𝑡! × 𝑓𝑤!$"
!#$) (4)

where, 𝑡! is the value of complexity factor 𝑖, and 𝑓𝑤! is the weight of factor 𝑖.
The ECF is calculated from a set of eight factors that describe the non-functional

requirements, as shown in Eq. (5). The environmental factors are listed in Table 4.

 𝐸𝐶𝐹 = 	1.4 − (0.03	 × ∑ 𝑒! × 𝑒𝑤!(
!#$) (5)

where, 𝑒! is the value of complexity factor 𝑖, and 𝑒𝑤! is the weight of factor 𝑖.

Table 1. Actor Classification and Their Weights.

Actor Classification Complexity Weight
Simple 1
Average 2
Complex 3

4

Table 2. Use Case Classification and Their Weights.

Use Case Classification Number of Transactions Complexity Weight
Simple (0 - 4) 5
Average <4 -7> 10
Complex (7 -	∞) 15

Table 3. Technical Complexity Factors

Factor ID Description Weight
T1 Distributed System 2
T2 Response Adjectives 2
T3 End-User Efficiency 1
T4 Complex Processing 1
T5 Reusable Code 1
T6 Easy to Install 0.5
T7 Ease of Use 0.5
T8 Portable 2
T9 Easy to Change 1
T10 Concurrent 1
T11 Security Feature 1
T12 Access for Third Parties 1
T13 Special Training Required 1

Table 4. Environmental Complexity Factors

Factor ID Description Weight
E1 Familiar with RUP 1.5
E2 Application Experience 0.5
E3 Object-oriented Experience 1
E4 Lead Analyst Capability 0.5
E5 Motivation 1
E6 Stable Requirements 2
E7 Part-time Workers -1
E8 Difficult Programming Language 2

2.2 Correlation-based Feature Selection

Performing feature selection is considered a step of data preprocessing to determine the
best subset of features to improve estimation accuracy [24], [25]. Feature selection
techniques can be classified: Filter, Wrapper, and Hybrid algorithms. Filter methods
select the most relevant features based on the properties of a dataset. In contrast,
wrapper methods select the best feature subset based on assessing the effects of various

5

subsets of features on the performance of an estimation system. Embedded or hybrid
methods determine the best feature subset by performing the selection step and model
building concurrently or combining filtering and wrapper techniques.

In this study, we use the CFS algorithm, which uses correlation to evaluate a feature
subset derived from the Pearson correlation coefficient. The CFS evaluates different
subsets of features according to the heuristic evaluation function and selects the best
one.

 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)* =
+,!""

-+.+(+0$),!!#
		 (6)

where, 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)* is the heuristic value of a feature subset 𝑓𝑠 containing 𝑛 features,
𝑟)22 is the average feature-class correlation, and 𝑟))! is the average feature-feature
intercorrelation [26]. To apply 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐)*, a correlation matrix and heuristic search
are computed to find a best subset of features. In this research, the CFS algorithm is
used with Greedy stepwise forward search by the space of attribute subsets.

2.3 Multiple Linear Regression

MLR is one of the types of effort estimation methods used to determine how the
dependent variable is related to a change in the independent variables and which
independent variable is relevant to the dependent variable [27]. The regression models
are built based on historical data. The regression models are then evaluated and
compared with alternative models [9]-[18]. The MLR model is shown in Eq. (7):

 𝑌 = 𝛼3 + 𝛼$𝑋$ + 𝛼4𝑋4 +⋯+ 𝛼+𝑋+ + 𝜀			 (7)

where 𝑌 is the dependent variable is related to the independent variables 𝑋$, … , 𝑋+; 𝛼3
is the intercept parameter; 𝛼$, … , 𝛼+ are the regression coefficients; and 𝜀! are the error
residuals.

3 Research Methodology

3.1 Data Description

The methods are evaluated on a dataset of 70 observations (each observation represents
a description of a realized software system) from three data donators [27]. All data
donators work in different government, health, and business sectors. The projects were
installed in Java and C# programming languages. For comparison and estimation
accuracy of the methods, a standard of 20 man-hours per UCP [4] is used, without
considering the productivity factor (PF - man-hours per 1 UCP). The statistical
properties of the dataset are described in Table 5. Fig. 1 shows the boxplot of Real_P20
in the dataset. Real_P20 is the real effort in man-hours divided by productivity.

Table 5. Statistical characteristics of the dataset

 Median
man-hours

Median
Real_P20

Standard
deviation

Minimum
Real_P20

Maximum
Real_P20 n

6

Dataset 6406 320.3 33.21 288.75 398.5 70

Fig. 1. Boxplot of Real_P20 in the dataset

3.2 Evaluation Criteria

To evaluate the accuracy of the methods, we used evaluation criteria commonly used
in the field of the software system size estimation [28]. The accuracy measure that used
in this paper are Mean Absolute Residual (MAR), Mean of Magnitude of Relative Error
(MMRE), Percentage of prediction within x% (PRED(x)), Mean Absolute Percentage
Error (MAPE), Sum of Squared Errors (SEE), and the Mean Squared Error (MSE).
These measures were chosen because they behave very differently. The best method is
the one where MAR, MMRE, MAPE, SSE and MSE are minimized and PRED (x) is
maximized.

Mean absolute residual (MAR)

 𝑀𝐴𝑅 = $
+
∑ |𝑦! − 𝑦O!|+
!#$ 		 (8)

Mean magnitude of relative error (MMRE)

 𝑀𝑀𝑅𝐸 = $
+
∑ |7#078#|

7#
+
!#$ (9)

Percentage of prediction within x% (PRED(x))

 𝑃𝑅𝐸𝐷(𝑥) = $
+
∑ {1	𝑖𝑓	 |7#078#|

7#
≤ 𝑥; 	0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒+

!#$ 			 (10)

Mean absolute percentage error (MAPE)

7

 𝑀𝐴𝑃𝐸 = $
+
∑ |7#078#|

7#
× 100+

!#$ 		 (11)

Sum of square error (SSE)

 𝑆𝑆𝐸 =	∑ (𝑦! − 𝑦O!)!4+
!#$ (12)

Mean squared error (MSE)

 𝑀𝑆𝐸 =	 $
+
∑ (𝑦! − 𝑦O!)!4+
! (13)

where, n is the number of observations, 𝑦! 	is the known real value, 𝑦O! 	is the estimated
value.

3.3 Methodology used

This section describes the procedure for investigating the accuracy of the proposed
method. As described in Section 2, the CFS algorithm selects the most appropriate
factors for the correction factors to be used as input to the MLR models. The
methodology for the historical dataset is as follows:
Step 1: Using the CFS algorithm to determine the correlation and benefit of the number
of technical complexity and environmental complexity factors for size estimation.
Step 2: Building the two MLR models based on the best correction factors preprocessed
by the algorithm CFS. The regression model on CFS-based selected technical factors is
called 𝑇𝐶𝐹9:;. The regression model on CFS-based selected environmental factors is
called 𝐸𝐶𝐹9:;.
Step 3: The effort estimation result of the proposed CFSiCF method is calculated as the
aggregate of four metrics - UAW (Eq. (2), UUCW (Eq. (3), 𝑇𝐶𝐹9:;, and 𝐸𝐶𝐹9:;

 𝑈𝐶𝑃9:;!9: = (𝑈𝐴𝑊 +𝑈𝑈𝐶𝑊) × 𝑇𝐶𝐹9:; × 𝐸𝐶𝐹9:; (14)

Step 4: Evaluate the methods using six performance measures (MAR, MMRE, PRED
(0.25), MAPE, SEE, and MSE).

4 Results

This section evaluates and discusses the experimental results according to the
methodology detailed in Section 3.

4.1 RQ1

The accuracies of experimental validation for the proposed CFSiCF method and other
tested methods are listed at Fig. 2-7. As the results, we can confirm that the proposed
CFSiCF method gives the best MAR, MMRE, MAPE, SSE, MSE, PRED (x) values in
four selected different subsets of factors.

Specifically, the correlation and benefit of the number of technical complexity and
environmental complexity factors in descending order of effectiveness (see Table 6):
Case 1 - eight selected technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and four
selected environmental factors (ENV5, ENV6, ENV7, ENV8); Case 2 - eight selected

8

technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and five selected environmental
factors (ENV4, ENV5, ENV6, ENV7, ENV8); Case 3 - eight selected technical factors
(T1, T2, T3, T4, T5, T7, T9, T10) and seven selected environmental factors (ENV1,
ENV3, ENV4, ENV5, ENV6, ENV7, ENV8); and Case 4 - eight selected technical
factors (T1, T2, T3, T4, T5, T7, T9, T10) and eight selected environmental factors
(ENV1, ENV2, ENV3, ENV4, ENV5, ENV6, ENV7, ENV8).

Based on the above results, RQ1 can be answered using the CFS method to lead
different subsets of factors that build diverse CFSiCF methods.

Table 6. Selected factors on TCF and ECF

Case Selected technical factors Selected environmental factors

1 T1, T2, T3, T4, T5, T7, T9, T10 ENV5, ENV6, ENV7, ENV8
2 T1, T2, T3, T4, T5, T7, T9, T10 ENV4, ENV5, ENV6, ENV7, ENV8
3 T1, T2, T3, T4, T5, T7, T9, T10 ENV1, ENV3, ENV4, ENV5, ENV6, ENV7,

ENV8
4 T1, T2, T3, T4, T5, T7, T9, T10 ENV1, ENV2, ENV3, ENV4, ENV5, ENV6,

ENV7, ENV8

Fig. 2. The MAR results of the UCP, AOM and CFSiCF methods

4.2 RQ2

We measured the accuracy improvements achieved by the proposed CFSiCF method
over the baseline method - UCP and other tested methods - AOM[14] and OCF[29]. As
the results in Table 7, the proposed method outperforms all other methods with superior
accuracy in MAR, MMRE, MAPE, SSE, MSE, PRED (x).

Specifically, the proposed CFSiCF method outperforms the UCP, OCF and AOM
methods by 33.45 - 43.50%, 8.42 - 16.58% and 18.48 - 27.41% respectively for MAR,

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

MAR
UCP OCF CFSiCF AOM

9

by 33.57 - 43.85%, 8.57 - 16.92% and 16.78 - 25.77% respectively for MMRE, by
37.47 - 44.48%, 12.43 - 22.24% and 24.87 - 33.28% respectively for PRED (0.25), by
33.43 - 43.72%, 8.43 - 16.79% and 16.66 - 25.66% respectively for MAPE, by 1.69-
2.24 times, 1.19-1.57 times and 1.39-1.85 times respectively for SSE and MSE.

Fig. 3. The MMRE results of the UCP, AOM and CFSiCF methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

MMRE
UCP OCF CFSiCF AOM

10

Fig. 4. The PRED(0.25) results of the UCP, AOM and CFSiCF methods

Fig. 5. The MAPE results of the UCP, AOM and CFSiCF methods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

PRED(0.25)
UCP OCF CFSiCF AOM

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

MAPE
UCP OCF CFSiCF AOM

11

Fig. 6. The SSE results of the UCP, AOM and CFSiCF methods

Fig. 7. The MSE results of the UCP, AOM and CFSiCF methods

0

200000

400000

600000

800000

1000000

1200000

1400000

1 3 5 7 9 111315171921232527293133353739414345474951535557

SSE
UCP OCF CFSiCF AOM

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

1 3 5 7 9 111315171921232527293133353739414345474951535557

MSE
UCP OCF CFSiCF AOM

12

Table 7. Comparison of the proposed method to other method variants

Method MAR MMRE PRED(0.25) MAPE SSE MSE
UCP 123.753 0.374 0.35 37.371 307472.9 21962.3
AOM 109.872 0.327 0.42 32.676 253954.5 18139.6
OCF 100.535 0.304 0.5 30.37 216512.7 15465.1
CFSiCF (Case 1) 86.234 0.26 0.64 26.002 130774.5 9791.04
CFSiCF (Case 2) 88.474 0.269 0.64 26.87 157356.1 11239.7
CFSiCF (Case 3) 92.454 0.28 0.57 27.954 178883.7 12777.4
CFSiCF (Case 4) 92.73 0.28 0.57 28.008 181691.4 12977.9

5 Conclusions

In this experimental study, we investigated the influence of the feature selection method
on the correction factors to improve the estimation accuracy of the UCP method. For
this purpose, the MLR method was chosen for correction factors preprocessed by the
CFS algorithm. The proposed CFSiCF method was compared with the other tested
methods on six accuracy measures using the 5-fold cross-validation method.

In the evaluation of RQ1, it can be concluded that the effect of the CFS algorithm
on the correction factors was demonstrated. The most accurate estimation results were
achieved with eight technical factors (T1, T2, T3, T4, T5, T7, T9, T10) and four
environmental factors (ENV5, ENV6, ENV7, ENV8). It also follows from the analysis
that in answer to RQ2, it can be said that the proposed CFSiCF method leads to a
significant increase in estimation accuracy compared to the UCP, AOM, and OCF
methods. It is also worth highlighting the simplification of the evaluation of the
correction factor values, which increases the usefulness of the proposed CFSiCF
method in practice.

Future research will further investigate other feature selection methods that can
increase diversity and produce more estimation accuracy of the CFSiCF method. In
addition, further research direction using clustering approaches will be considered a
solution in our future work.

Acknowledgment. This study was supported by the Faculty of Applied Informatics,
Tomas Bata University in Zlin, under Project IGA/CebiaTech/2021/001.

References

1. G. Kotonya and I. Sommerville: Requirements engineering: Processes and techniques.
Wiley, 1st edition, 1998.

2. A. Trendowicz and R. Jeffery: Software project effort estimation. Foundations and Best
Practice Guidelines of Success, Springer, 2014.

3. B. Boehm, C. Abts, and S. Chulani: Software development cost estimation approaches - A
survey. Annals of Software Engineering, vol. 10, pp. 177-205, doi:
10.1023/A:1018991717352, 2000.

13

4. Karner: Resource Estimation for Objector Projects. Objective Systems SFAB, 1993.
5. M. Azzeh, A.B. Nassif, and I.B. Attili: Predicting software effort from use case points: A

systematic review. Science of Computer Programming, 2021.
6. Y. Singh, P.K. Bhatia, A. Kaur, and O.P. Sangwan: A review of studies on effort estimation

techniques of software development. 2nd National Conference Mathematical Techniques:
Emerging Paradigms for Electronics and IT Industries, 2008.

7. Y. Mahmood, N. Kama, and A. Azmi: A systematic review of studies on use case points and
experts-based estimation of software development effort. Journal of Software: Evolution and
Process, 2019.

8. A.P. Subriadi, Sholiq, and P.A. Ningrum: Critical review of the effort rate value in use case
point method for estimating software development effort. Journal of Theoretical and Applied
Information Technology, vol. 59, 2005.

9. A.B. Nassif, L.F. Capretz, and D. Ho: Enhancing Use Case Points Estimation Method Using
Soft Computing Techniques. Journal of Global Research in Computer Science, 2010.

10. A.B. Nassif, L.F. Capretz, and D. Ho: Estimating Software Effort Based on Use Case Point
Model Using Sugeno Fuzzy Inference System. 23rd IEEE International Conference on Tools
with Artificial Intelligence, 2011.

11. A.B. Nassif, D. Ho, and L.F. Capretz: Regression Model for Software Effort Estimation
Based on the Use Case Point Method. International Conference on Computer and Software
Modeling, IPCSIT, vol.14, 2011.

12. M. Jorgensen: Regression models of software development effort estimation accuracy and
bias. Empirical Software Engineering, vol. 9, pp. 297-314, 2004.

13. M. Ochodek, J. Nawrocki, and K. Kwarciak: Simplifying effort estimation based on use case
points. Information Software Technology, vol. 53, pp. 200-213, 2011.

14. R. Silhavy, P. Silhavy, and Z. Prokopova: Algorithmic Optimisation Method for Improving
Use Case Points Estimation. PLoS ONE, 2015.

15. A.B. Nassif, and L.F. Caprets: Software effort estimation in the early stages of the software
life cycle using a cascade correlation neural network model. ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, 2012.

16. M.S. Iraji and H. Motameni: Object oriented software effort estimate with adaptive neuro
fuzzy use case size point (ANFUSP). International Journal of Intelligent Systems and
Applications, vol.4, pp. 14-24, 2012.

17. V.K. Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, and E. Khatibi: A flexible method to
estimate the software development effort based on the classification of projects and
localization of comparisons. Empirical Software Engineering, vol. 19, pp. 857–884, 2014.

18. N.H. Chiu and S.J. Huang: The adjusted analogy-based software effort estimation based on
similarity distances. Journal of Systems and Software, vol. 80, pp. 628-640, doi:
10.1016/j.jss.2006.06.006, 2007.

19. H.L.T.K. Nhung, H.T. Hoc, and V.V. Hai: A review of Use Case-based development effort
estimation methods in the system development context. In: CoMeSySo Springer Series:
Advances in Intelligent Systems and Computing Springer, 2019.

20. M.H. Luis and B.O. Sussy: Factors affecting the accuracy of Use Case Points. Trends and
Applications in Software engineering, Advances in Intelligent Systems and Computing 537,
2017.

21. A.B. Nassif, D. Ho, and L.F. Caprets: Towards an early software estimation using Log-linear
regression and a multilayer perceptron model. Journal of systems and software, vol 86, pp.
144-160, 2013.

22. M.A. Hall: Correlation-based feature selection for machine learning. Citeseer 113, pp.1–8,
1999.

14

23. N. Sánchez-Maroño, A. Alonso-Betanzos, and M. Tombilla-Snaromán: Filter methods for
feature selection. A comparative study. In Intelligent Data Engineering and Automated
Learning (IDEAL), pp. 178–187, doi: 10.1007/978-3-540-77226-2, 2007.

24. E. Chandra Blessie and E. Karthikeyan: Sigmis: A feature selection algorithm using
correlation based method. Journal of Algorithms and Computational Technology, vol. 6, pp.
385–394, 2012.

25. A. Idri and S. Cherradi: Improving effort estimation of Fuzzy Analogy using feature subset
selection. IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1-8, doi:
10.1109/SSCI.2016.7849928, 2016.

26. M.A. Hall and G. Holmes: Benchmarking attribute selection techniques for discrete class
data mining. IEEE Transactions on Knowledge and Data Engineering, vol. 15, pp. 1437–
1447, 2003.

27. R. Silhavy, P. Silhavy, and Z. Prokopova: Analysis and selection of a regression model for
the Use Case Points method using a stepwise approach. Journal of Systems and Software,
vol. 125, pp. 1-14, doi. 10.1016/j.jss.2016.11.029, 2017.

28. R. Silhavy, P. Silhavy, and Z. Prokopova: Using actors and use cases for software size
estimation. Electronics 2021, vol.10, doi: 10.3390/electronics10050592, 2021.

29. H.L.T.K. Nhung, H.T. Hoc, and V.V. Hai: An Evaluation of Technical and Environmental
Complexity Factors for Improving Use Case Points Estimation. CoMeSySo 2020. Advances
in Intelligent Systems and Computing Springer, 2020.

