
education 
sciences

Article

Teaching Congruences in Connection with
Diophantine Equations
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Abstract: The presented paper is devoted to the new teaching model of congruences of computer
science students within the subject of discrete mathematics at universities. The main goal was to create
a new model of teaching congruences on the basis of their connection with Diophantine equations
and subsequently to verify the effectiveness and efficiency of the proposed model experimentally. The
teaching of congruences was realized in two phases: acquisition of procedural knowledge and use of
Diophantine equations to obtain conceptual knowledge of congruences. Experiments confirmed that
conceptual understanding of congruences is positively related to increasing the procedural fluidity
of congruence resolution. Research also demonstrated the suitability of using Diophantine equations
to link congruences and equations. Among other things, the presented research has confirmed the
justification of teaching mathematics in computer-oriented study programs.

Keywords: congruences; residual classes; cryptography; relational algebra; prime numbers; discrete
mathematics; survey

1. Introduction

Society is currently being intensively digitized, and the ongoing COVID-19 pandemic
has increased that need. With the transfer of work activities to the online space, the require-
ments for the security of virtual space are also increasing, which should also be ensured
by high-quality encryption of the content of messages transmitted within the Internet
networks. It is a challenge also for the field of education, which often faces criticism from
the employers of school graduates themselves. Various employers claim that schools do
not pay enough attention to understanding and developing the skills that graduates need
to succeed outside school [1]. The World Economic Forum (2016) identified, among other
things, the skills that students should have after completing their university studies. These
are, for example, the ability to solve problems comprehensively, the ability to think critically,
the ability to creatively use already acquired knowledge in various contexts and cognitive
flexibility enabling insight into the problem to be solved from different perspectives. For
these reasons, too, we consider it necessary to explore the possibilities of teaching mathe-
matics with regard to the understanding and interconnection of individual knowledge. At
the same time, it is necessary for students to gain experience in the diverse use of mathemat-
ics from the teaching of mathematics. According to Prawat [2], the assignment of diverse
tasks is beneficial for the student, as necessary knowledge and skills are built up when the
student has to deal with rich information and by resolving cognitive conflicts, instead of
using ready-made algorithms to solve standard tasks. Applying knowledge in a variety of
situations is a convenient way to combine the process of remembering and understand-
ing. According to Marton et al. [3], it is necessary to combine these two processes in the
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teaching mathematics. Research also suggested that practitioners draw on interdisciplinary
knowledge in problem solving ([4–6]). Given the difficulty and complexity of the problems
that need to be addressed today, interdisciplinary knowledge is a natural requirement
for school leavers. The accelerated development of scientific knowledge creates a natural
requirement and a precondition to manage the teaching process through interdisciplinary
relationships [7]. For example, regarding machine learning, in addition to programming
skills the solver of a real problem needs a relatively broad knowledge of various areas
of mathematics.

The above-mentioned need for cyber security requires quality computer experts and
computer scientists. Informatics and mathematics have really strong ties and a common
history [8]. Mathematics provides a theoretical basis for many sub-areas of computer
science. It also provides important analytical tools that computer scientists apply to specific
computational problems. For example, the study of ciphers and the search for possibilities
to break them has an incredibly large amount of synergy with mathematics [9]. This link
between mathematics and computer science and practice could serve as a strong motivating
factor for students to acquire the mathematical knowledge needed to understand the
nature of encryption. The basic precondition for mastering the problem of encryption
is the acquisition of knowledge in the field of congruences. When teaching students
how to solve linear congruences, it might be useful to consider these congruences as
analogous to equations [10]. To achieve this goal, Diophantine equations, which can
also be solved using congruences, prove to be a suitable tool. According to [11] the
development of quality procedural lessons in order to create basic procedural knowledge
in conjunction with pointing out the basic concepts is a prerequisite for later improvement
of procedural knowledge and gaining the necessary conceptual knowledge. The search
for ways to combine the isolated requirements of professional subjects with a conceptual
understanding of mathematical concepts or procedures could contribute to the streamlining
of mathematical courses in non-mathematical study fields of universities. To understand
professional problems, computer science students to a large extent need a conceptual
understanding of the mathematical background of a given issue. On the basis of the
above research objectives, the aim was to find out whether the connection of knowledge
about congruences with the solution of Diophantine equations will increase the success of
students in solving problems related to congruences. At the same time, we experimentally
verified the assumption that improving procedural knowledge of congruences can support
the improvement of conceptual knowledge of congruences.

2. Cryptography and Congruences

The problem of encrypting a message so that the enemy does not understand it and
the ally can decrypt it again has been important since ancient times. It is known that
Gaius Julius Caesar already used a simple code in which each letter was replaced by
a different one found in the Latin alphabet “three places further”, i.e., A→ D , B→ E ,
C → F , etc. Important mathematicians took part in solving codes. For example, François
Viète (1540–1603) deciphered the code used by Spanish troops in France. During World
War II, the Germans used an encryption machine called ENIGMA. The breaking of this
code by a group of British correspondents led by Alan Turing [12] was essential for the
Allied victory in the North Atlantic, where German submarines threatened the convoys
of Allied ships. In the Pacific, the decipherment of the Japanese code before the Battle of
Midway Roundtable brought the Americans a great advantage when they managed to sink
four Japanese aircraft carriers and lost only one themselves.

It can be said that until the early 1970s, cryptography was more or less a military matter
and not much was published about the theory of coding. However, the civilian, commercial
and banking sphere began to make more and more use of wireless data transmission, which
could also be “sensitive”. Therefore, there arose the need to find a simple cryptographic
algorithm used for secure and fast data transmission. In November 1976, it was formally
adopted in the USA as a federal standard called DES (Digital Encryption Standard) [13]. It
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was a cryptographic system with a secret key, where any two users had to exchange this
key before they could exchange encrypted messages. The encrypted message was very
difficult to decipher for those who did not know the key.

In 1976, Diffie and Hellman proposed a fundamentally new method using the so-called
public key for encryption systems. However, the system also has a secret key, and only
those who know it are able to easily decrypt the text encrypted with the public key. The
implementation of this system was proposed by Rivest, Shamir and Adleman (a so-called
RSA system) [14]. This method is related to the issue of electronic signatures or trading on
the Internet. It is based on the mathematical apparatus (factorization) of natural numbers
into powers of prime numbers. It is an encryption in which each of its principles is known
and is public, but no one decrypts the encrypted information, because the public key only
(i.e., knowledge of the encryption principle) is not enough. To decipher the cipher and read
the message, it is necessary to obtain prime number elements of prime factorization that
can only be obtained by the recipient of the message who also knows the private key (that
is, some necessary information on how the product originated). One of the first standards
was RSA-768 [15], which represents a 232-digit number. The standard has been broken
by scientists by bringing together hundreds of computers that have been working for a
period representing 2000 years of one computers work. Later, the RSA-1024, RSA-2048
or RSA-4096 standards have been developed which are used today. The use of linear
congruences for coding problems stems from knowledge from the 18th century, which has
started to be used practically now in the 20th century.

Thus, we can easily algorithmically decompose only numbers of a certain “small”
size into the product of prime numbers and this fact is the basis of virtual security. If we
take two very large prime numbers, where both the first and the second represent some
information, it is easy to multiply them with each other, giving a very large composite
number practically decomposable (unless we know the so-called private key, i.e., some
necessary information how the large number came up). Algorithms that would look for
the factors of a product by “brute force”, i.e., by trying all possibilities, would have a
tremendous time complexity [16]. The principle of coding a given message x using the
RSA method is that we take two large primes p and q, which mutually different such
that x < p·q and p - x, q - x. We create their product p·q, which is publicly accessible.
However, only one who knows both primes p and q can easily calculate the value of the
Euler function ϕ(p·q) = (p− 1)(q− 1). For those who do not know from which primes
the product originated, it is very difficult to calculate the value of ϕ(p·q) because the
decomposition of the large number which originated as a product of prime numbers
is demanding. Now we choose any number e, incommensurable with ϕ(p·q), except
e = 1 and e = (p− 1)(q− 1)− 1. This number, a so-called encryption exponent, shall
also be disclosed. Anyone who knows the numbers p·q and e can encrypt their message
by calculating the number y for which y ≡ xe(mod p·q) holds true. The author of the
message must calculate the so-called decoding exponent f , presented by a private key.
It can be found as a solution of the congruence e· f ≡ 1(mod ϕ(p·q)). It holds true that
(e, ϕ(p·q)) = 1 and the search for the number f is performed by Euclid’s algorithm [17], so
there exist integers f , h such that e· f + ϕ(p·q)·h = 1. Then, e· f = 1− ϕ(p·q)·h and thus
e· f − 1 is divisible by ϕ(p·q) and e· f ≡ 1(mod ϕ(p·q)). The decryption of the encoded
word y consists of the following steps. We know that e· f = 1− ϕ(p·q)·h. Let k = −h, then
e· f = 1 + ϕ(p·q)·k. As (x, p·q) = 1, then according to Euler’s theorem [18],

xϕ(p·q) ≡ 1(mod p·q), (1)

and also
xk·ϕ(p·q) =

(
xϕ(p·q)

)k
≡ 1(mod p·q), (2)

then
y f = xe· f = x·xk·ϕ(p·q) ≡ x(mod p·q). (3)
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The last relation describes that in order to decrypt the encoded word y, it is sufficient to
calculate the smallest non-negative remainder by dividing the power y f by the number p·q,
which is an easily solvable task. The RSA method is the simplest one and it shows
how modular arithmetic has a practical application. The RSA method has become very
widespread in e-banking, online shopping, electronic signatures, etc. [19].

We will show the RSA encryption principle using the congruences on a specific
example. We will encrypt (and decrypt) the name (message) “REX” by RSA method using
prime numbers p = 7, q = 11. We will work with the letters of English alphabet, A, B, C,
D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z, assigning each letter a
numeric two-digit number, sequentially to letter A—01, to letter B—02 etc. to letter Z—26.

Then the word “REX” in numeric form will presented by number x = 180524.
Now, we will encrypt letter by letter. The product p·q = 77, hence ϕ(p·q) = ϕ(77) =

77·
(

1− 1
7

)
·
(

1− 1
11

)
= 77· 67 ·

10
11 = 6·10 = 60 [20]. Let us choose, e.g., e = 43 as the en-

cryption exponent so that gcd(60, 43) = 1. Now we have to calculate the number f that
e· f ≡ 1(mod 60). Using the Euclidean algorithm, we get 60 = 43·1 + 17, 43 = 17·2 + 9,
17 = 9·1+ 8 a 9 = 8·1+ 1. Next gcd(60, 43) = 1 = 9− 8 = 9− (17− 9) = 17·(−1) + 9·2 =
17·(−1) + (43− 17·2)·2 = 43·2 + 17·(−5) = 43·2 + (60− 43)·(−5) = 60·(−5) + 43·7.
From that we see 43·7 = 1 + 60·5, and therefore 43·7 ≡ 1(mod 60). Then the decryption
exponent is f = 7.

As we encrypt letter by letter, we now have to calculate the numbers y such that
y ≡ a43(mod 77) (resp. we solve the Diophantine equation −77x + y = a43, because
77

∣∣y− a43 ⇒ y− a43 = 77x ) sequentially for a = 18, 5, 24. Now we calculate y ≡ 1843

(mod 77), so we’re searching such y that belong to the same residual class as the num-
ber 1843 modulo 77. It holds 1843 = 18·1842 = 18·

(
186)7 ≡ 18·157 = 270·156 =

270·
(
153)2 ≡ 270·642 ≡ 46(mod 77). Analogously from congruences y ≡ 543(mod 77)

and y ≡ 2443(mod 77) we get the remaining values 26 and 52 for y. To decrypt the mes-
sage back with the private key f = 7 letter by letter, we first calculate the congruence
x ≡ 467(mod 77) and we get x = 18, which represents the letter R. The same way we
calculate the remaining two congruences x ≡ 267(mod 77) and x ≡ 527(mod 77). The
results obtained are shown in Table 1.

Table 1. RSA encryption principle.

Message from
Sender x

y
Encrypted
Message

Decrypted
Message

Message at the
Recipient

R 18 46 18 R
E 5 26 5 E
X 24 52 24 X

More information on RSA cryptosystems using congruences can be found, e.g., in [21].

3. Results

Consider a, b, m ∈ Z, while m > 1. Then we say that number a is congruent with
number b by module m (or we call it modulo m), if m|(a− b) . Additionally, we note

a ≡ b(mod m). (4)

The number a is called the left side, the number b the right side of congruence. The
notation ab(mod m) means that the number a is not congruent with number b by module
m., i.e., m - (a− b) [22].

The relation of congruence is:

1. reflex: a ≡ a(mod m)
2. symmetric: a ≡ b(mod m)⇒ b ≡ a(mod m)
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3. transitive: a ≡ b(mod m) ∧ b ≡ c(mod m)⇒ a ≡ c(mod m)

Now we show that if a + b ≡ c(mod m) and a ≡ d(mod m), then d + b ≡ c(mod m).
From a + b ≡ c(mod m) it applies m|a + b− c and from a ≡ d(mod m) it applies m|a− d .
Then a + b − c = k1m and a − d = k2m, thus d − a = −k2m. Then a + b − c + d − a =
k1m− k2m, and therefore d + b− c = (k1 − k2)m. Out of previous d + b ≡ c(mod m).

Furthermore, if a ≡ b(mod m) and c is any integer, then:

a + c ≡ b + c(mod m). (5)

Because if a ≡ b(mod m), then m|(a− b) . As (a + c) − (b + c) = a − b, then
m|[(a + c)− (b + c)] , out of which a + c ≡ b + c(mod m).

Now consider the congruence system:

(mod m)a2 ≡ b2(mod m) · · · ak ≡ bk(mod m) (6)

Then a1a2 . . . ak ≡ b1b2 . . . bk(mod m). The formula can be proved by mathemati-
cal induction. First let k = 2. Then we must show that a1a2 ≡ b1b2(mod m). Let us
denote M = a1a2 − b1b2 = a1a2 − a1b2 + a1b2 − b1b2 = a1(a2 − b2) + b2(a1 − b1). From the
assumptions of the first and second congruence the following applies m|(a1 − b1) and
m|(a2 − b2) , and thus m|M . The second step is analogous.

From the last statement we can deduce the result that if a ≡ b(mod m) and c is any
integer, then:

ac ≡ bc(mod m). (7)

Next, let a ≡ b(mod m). Let d be an integer with properties d|a , d|b , (d, m) = 1.
Then:

a
d
≡ b

d
(mod m). (8)

To prove the validity of this formula, let us denote a = a1d, b = b1d. Based on
the assumption m|(a− b) , it is valid that m|d(a1 − b1) . As (d, m) = 1, it is valid that
m|(a1 − b1) . Then a1 ≡ b1(mod m), thus a

d ≡
b
d (mod m).

Again, let a ≡ b(mod m) and d > 0 be a common divisor of numbers a, b, m. Then:

a
d
≡ b

d

(
mod

m
d

)
. (9)

If it is true that a ≡ b(mod m), then there is such an integer c, that a − b = mc.
After dividing by number d we get a

d −
b
d = m

d c, which means that m
d

∣∣∣( a
d −

b
d

)
, and thus

a
d ≡

b
d
(
mod m

d
)
.

Next consider any natural number m > 1. According to the division with remainder
theorem [23], we can write every integer n in the form:

n = m·q + r, 0 ≤ r < m (10)

While the number r is called the remainder of division of the number n by number m.
Now let us decompose the set Z to subsets R0(m), R1(m), . . . , Rm−1(m) in such a way that
Ri is the set of all those integers whose remainder after dividing by a number m is i.

Then the sets Ri(m) are called the residual classes according to a module (or we talk
about modulo) m. The residual classes are disjoint by pairs and each integer belongs to one
of them. At the same time the set Ri(m) is a set of all integers x, to which it applies that
x ≡ i(mod m). If modulo is known, we simply refer Ri instead of Ri(m).

Integers a and b belong to the same modulo class m if and only if a ≡ b (mod m). We
can prove the validity of the statement from both sides.

I. Let us express the numbers a, b ∈ Ri in the form:

a = m·q + i, b = m · p + i. (11)
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Then a− b = m(q− p), i.e., m|a− b , and then a ≡ b(mod m).
II. Now let a ≡ b (mod m) and a = mq + i, b = mp + j (0 ≤ i, j < m). Suppose for ex-

ample that i > j. As a ≡ b (mod m), then m|a− b . However, then
m|(a− b) = [m(q− p) + (i− j)] , out of which m|(i− j) , but that is a contradiction be-
cause 0 < i− j < m. Similarly, a contradiction arises from the assumption i < j. It must
therefore apply i = j, and then numbers a a b belong to the same residual class.

The m-tuple of numbers x0, . . . , xm−1 is called a complete residual modulo system m,
if xi ∈ Ri for i = 0, . . . , m− 1. We say that the residual class Ri by module m is reduced
if (i, m) = 1. For example, the residual class R2 is reduced modulo 7, because (2, 7) = 1.
The class R0 it is not reduced by any module.

If Ri is a reduced residual class modulo m, then for any x ∈ Ri it applies (x, m) = 1.
Because it is valid that x ≡ i(mod m), thus m|(x− i) , and therefore there exists such an
integer c that x− i = mc, thus x−mc = i. Then every common divisor of numbers x and
m would also be a divisor of number i, and thus the common divisor of i and m. However,
as (i, m) = 1, it is valid that (x, m) = 1.

There exist ϕ(m) reduced residual classes of modulo m [23]. We say that ϕ(m)-tuple
of numbers y1, . . . , yϕ(m) forms a reduced residual modulo system m if numbers yi are
selected one by one from the reduced residual classes. The elements of the reduced system
are coprime with m. The reduced residual system can be obtained by omitting numbers
that are commensurable with the module, from the complete. E.g., if m = 8. The complete
residual system consists e.g., of numbers 0, 1, 2, 3, 4, 5, 6, 7. We will choose 0, 2, 4 6 from
those because they are commensurable with m, so we get a reduced residual system of
1,3,5,7. It is valid that ϕ(8) = 8

(
1− 1

2

)
= 4.

Generally, all non-negative numbers less than m coprime with m form the smallest
non-negative reduced residual system.

If y1, . . . , yϕ(m) is a reduced residual system modulo m and (m, c) = 1, then
cy1, . . . , cyϕ(m) is a reduced residual system too, by module m. Numbers y1, . . . , yϕ(m)

belong to different residual classes and the same can be said of numbers cy1, . . . , cyϕ(m)

because of congruence cyi ≡ cyj(mod m) under the condition (m, c) = 1 the following
results:

yi ≡ yj(mod m). (12)

The count of numbers cyi is ϕ(m) while (cyi, m) = 1. It means the numbers cyi are
selected one by one out of the reduced residual classes.

Let x1, . . . , xϕ(m) and y1, . . . , yϕ(m) are any reduced residual systems modulo m. Then

x1 . . . xϕ(m) ≡ y1 . . . yϕ(m) (mod m). (13)

Each xi is congruent with just one yj because both groups are selected one by one from
the reduced classes. Additionally, the evidence then results directly from the properties of
the congruences, while if:

a1 ≡ b1(mod m)a2 ≡ b2(mod m) · · · ak ≡ bk(mod m) (14)

then a1a2 . . . ak ≡ b1b2 . . . bk(mod m).
A linear congruence with one unknown is a congruence in the form:

ax ≡ b (mod m). (15)

The solution of linear congruence is such a residual class Ri(m) that m|(ax− b) applies.
A congruence is called solvable if it has at least one solution.

Congruence ax ≡ b (mod m) can also be written in the form:

ax = b + my, (16)

which actually gives a linear Diophantine equation with two unknowns [17].
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A linear congruence ax ≡ b (mod m) is solvable if and only if (a, m)|b . If module m
and coefficient a are coprime, then linear congruence is always solvable and the elements
of one residual class are the solution.

Let y ∈ Z is a solution to congruence ax ≡ b (mod m) and let y ∈ Ri(m). Then all the
elements of the set Ri are a solution to congruence ax ≡ b (mod m). Thus, a solvable linear
congruence has infinitely many solutions. This follows directly from the basic properties of
congruences and residual classes. If z ∈ Ri, then z ≡ y(mod m) and az ≡ ay ≡ b(mod m).

If (a, m)|b , then congruence ax ≡ b (mod m) has just (a, m) mutually non-congruent
(or we talk about incongruent) solutions. Let us denote d = (a, m), z = m

d . Let y is such a
congruence solution ax ≡ b (mod m) to which it applies 0 ≤ y < m. Additionally, let us
examine numbers that are in the form:

y + zs, where s = 0, 1, . . . , d− 1. (17)

These numbers are congruent ax ≡ b (mod m) because it is true that a(y + zs) =
ay + a m

d s ≡ b(mod m) because a
d s is an integer, and thus a m

d s is a multiple of the number
m. Now we indirectly prove that the numbers y + zs are non-congruent with each other
according to modulo m. Suppose:

y + zs1 ≡ y + zs2(mod m). (18)

From this, based on common congruence simplifications, we get:

s1 ≡ s2(mod m), (19)

which is not possible, because s1 6= s2 while 0 ≤ s1, s2 < m. Vice versa, if u and v are
different solutions to congruence x ≡ b (mod m), then the following applies:

au ≡ av(mod m). (20)

Then: a
d

u ≡ a
d

v
(

mod
m
d

)
.

As
( a

d , m
d
)
= 1, it is valid that:

u ≡ v
(

mod
m
d

)
. (21)

So, all solutions of congruence ax ≡ b (mod m) that belong to the interval 〈0, m− 1〉
are congruent with y by module m

d and are in form of ax ≡ b (mod m) and all remaining
solutions are congruent with some of the solutions.

A linear congruence can also be solved using Euler’s theorem [18]. If we have a
congruence ax ≡ b (mod m) where (a, m) = 1, then the number

aϕ(m)−1b (22)

is one of its solutions. Because it is true that a
(

aϕ(m)−1b
)
= aϕ(m)b ≡ b(mod m).

4. Research Methodology

The research was carried out at a selected university in the Slovak Republic with the
knowledge and consent of the faculty management. Before the start of the research, all
students of the 1st year of bachelor’s study in computer science study fields were addressed.
A total of 38 students volunteered for the research. All participants in the research were
informed about the anonymity of the obtained data. The methodological research is based
on the claims of Dahlin and Watkins [24], according to which the connecting point between
memorization and comprehension is meaningful repetition. Meaningful repetition creates
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a deep impression, which leads to memorization and can also lead to the “discovery of a
new meaning”, which leads to understanding [25]. Therefore, we divided the teaching of
congruences into two phases (Figure 1):
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Phase 1—teaching congruences with a focus on the development of procedural knowl-
edge about congruences, Phase 2—“meaningful repetition” of congruences in order to
create a conceptual understanding of the concept of congruence in students. This division
is theoretically based on the finding that improving procedural knowledge can support
the improvement of conceptual knowledge. Evidence comes from studies of carefully con-
structed practical problems [26–29]. We used the solution of Diophantine equations in the
second phase as a “tool” to connect between congruences and linear equations. According
to [30], this connection is very important for the successful solution of congruences.

In the first phase of the research, students completed a seminar on mathematics con-
sisting of two parts: (a) solving Diophantine equations, and (b) congruences. The seminar
was realized in the form of full-time teaching. In this phase, students became acquainted
with the basic algorithm for solving Diophantine equations. We solved linear Diophantine
equations with two unknowns in the form ax + by = c, a, b 6= 0, while explaining the
algorithmic solution procedure. As the solution procedure required knowledge of the
Euclidean algorithm, this was taken over separately [31]. Subsequently, they adopted the
concept of “congruence” and their basic properties. Then simple congruences (equations
on the set Zn) were solved. Within the curriculum of congruences, we first took over the
basic properties of congruences and the basic theorems for working with congruences. We
have separately explained the residual classes and definitions as a complete or reduced
residual system. We have defined a linear congruence with one unknown in the form
ax ≡ b (mod m) and showed an algorithm for its solution. We explained conditions for
solvable congruence and what congruent and incongruent solutions mean (Section 3, part
Equations (15)–(22)). The same time was devoted to both parts of the seminar. After
completing the seminar, a pre-test was carried out, in which tasks from both parts of
the seminar were equally represented (two tasks from each thematic area). Students had
60 min to solve the four tasks. We asked students to measure the real time they needed to
solve each task in addition to solving the given tasks. In the second phase of the research,
after passing the pre-test, the same students completed another part of the mathematics
seminar, where attention was paid to the connection between congruences and Diophan-
tine equations. In this part of the seminar, students were introduced to the method of
using congruences to solve Diophantine equations (Section 3, Equation (16)). This can be
considered a meaningful repetition in order to link the solution of congruences with the
solution of equations. Thus, students can use already acquired algebraic knowledge and
skills in solving congruences. After the second part of the mathematics seminar, students
completed a post-test, which included two problems to be solved by Diophantine equations



Educ. Sci. 2021, 11, 538 9 of 14

and two problems for congruences (as in the pre-test). In addition to solving the problems,
they also recorded the time needed for solving.

We sought answers to the following research hypotheses by content analysis of re-
spondents work and statistical analysis of respondents success in pre-test and post-test:

Hypothesis (H1): Linking congruences with the solution of Diophantine equations and linear
equations will increase the success of students in solving congruences.

Hypothesis (H2): Conceptual understanding of congruences will reduce students’ time to solve
congruent problems.

5. Research Results
5.1. Analysis of the Success of Respondents in Solving Tasks

The results (number of points) that the students achieved in the pre-test and in the
post-test are shown in Figure 2.
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In Figure 2 we can see that the students in the pre-test and in the post-test achieved
different results (number of points). We wondered if these differences were also statistically
significant. A parametric paired t-test can be used to verify the statistical significance
of the differences between the two tests in the results obtained. A prerequisite for its
correct use is the fulfillment of the assumption of a normal distribution of the observed
feature. In our case, we verified the assumption of a normal distribution of both sets by the
Shapiro–Wilk test.

As the assumption of a normal distribution of observed traits is not substantiated, we
used the nonparametric Wilcoxon signed rank test, which is a nonparametric analogy of a
paired parametric t-test, to verify the statistical significance of differences in the level of
observed traits.

In our case, the observed characters were X, Y, where X is the number of points that
students gained in the pre-test and Y is the number of points that students gained in the
post-test. Because we assume that students received higher scores in the post-test, in this
case we will use the one-sided Wilcoxon test. We tested hypothesis H0: the medians X,
Y are equal to the one-sided alternative hypothesis H1 that the median Y is greater. We
implemented the test in the STATISTICA program. After entering the input data, we got
the following results into the output set of the computer: the value of the test criterion of
the one-sample Wilcoxon test (Z = 5.373) and the value of the probability p (p = 0.000). We
evaluated the test using the value of p (p is the probability of an error we make when we
reject the tested hypothesis). If the calculated value of the probability p is sufficiently small
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(p < 0.05 or p < 0.01), we reject the tested hypothesis (at the significance level 0.05 or 0.01).
As the calculated value of the probability p < 0.01, at the level of significance α = 0.01 we
reject the tested hypothesis H0. This means that by taking over or by supplementing the
curriculum focused on the relationship between Diophantine equations and congruences
in the optional seed, the level of students’ knowledge in the field of congruences increased
statistically significantly.

Subsequently, we were interested in whether knowledge in solving problems in the
field of congruences statistically significantly improved, and also whether it improved
for Diophantine equations. For this reason, we verified the statistical significance of the
differences in the success of solving each of the four pre-test and post-test tasks by using
the Wilcoxon one-sample test. The obtained results are clearly recorded in Table 2.

Table 2. Wilcoxon signed rank test (success in pre-test and post-test).

Problem Z p-Value

1 2.950 0.003 *

2 2.094 0.036 *

3 4.372 0.000 *

4 5.232 0.000 *
Note. Statistically significant values are marked with an asterisk in the table.

The results of the test showed that in all four tasks, students achieved a statistically
significantly higher success rate in the post-test than in the pre-test. This confirmed the
validity of the research Hypothesis (H1).

5.2. Analysis of the Length of Time Required to Solve Tasks

Average number of minutes that the students needed in the pre-test and in the post-test
are shown in Figure 3.
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In Figure 3 we can see that there are differences between the average time that students
needed to solve the problems in pre-test in post-test. We also verified whether these
differences are statistically significant in the case of using the Wilcoxon signed rank test.
We proceeded analogously as in the previous case—when analyzing the success of solving
problems in the pre-test and post-test. We calculated the value of the single-sample
Wilcoxon test criterion (Z = 4.839) and the probability value p (p = 0.000). We also evaluated
the test when using the value of the probability p. As the calculated value of the probability
p < 0.01, at the level of significance α = 0.01 we reject the tested hypothesis H0. This means
that by teaching the curriculum focused on the relationship between Diophantine equations
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and congruences in the selective seminar, the time that students needed in the post-test to
solve problems was statistically significantly reduced.

Subsequently, we were interested in whether time decreased statistically significantly
not only in solving problems in the field of congruences but also Diophantine equations.
For this reason, we used the Wilcoxon single-sample test to verify the statistical significance
of the differences in time that students needed to solve each of the 4 pre-test and post-test
problems. The obtained results are clearly recorded in Table 3.

Table 3. Wilcoxon signed rank test (time required to solve pre-test and post-test tasks).

Problem Z p-Value

1 4.022 0.000 *

2 3.456 0.001 *

3 2.187 0.029 *

4 2.113 0.035 *
Note. Statistically significant values are marked with an asterisk in the table.

The results of the test showed that in all four problems, students achieved a statistically
significantly shorter time in the post-test than in the pre-test. In other words, the difference
between the time that students needed to solve a given problem (each) in the post-test is
statistically significantly shorter than the students needed to solve an adequate problem in
the pre-test. This confirmed the validity of the research Hypothesis (H2).

6. Discussion

In the pre-test, which followed the first phase of teaching congruences, students
recorded very low success in solving problems focused on congruences (success rate was
43% or 17%). Congruences were a new concept for them and, according to students, it
was an isolated concept for them (72% of students). Isolated knowledge leads to the
acquisition of skills without understanding [32]. The solution of congruences was for
them a “branched” algorithm, the memory of which caused them problems. This was
evidenced by the large number of unresolved problems. Our findings confirmed the fact
that learning new concepts is difficult for students if there is no network of previously
learned concepts and skills with which to combine a new topic [33]. Despite sufficient time
to solve the pre-test, the students were unable to reconstruct the insufficiently memorized
algorithm. This indicates their focus on acquiring procedural skills without understanding
the individual steps of the algorithm [34]. However, a conceptual understanding of a new
concept is also necessary for the successful solution of problems, and this requires the
connection of new knowledge with already acquired knowledge [35]. In our case.

There is a need to link the concept of “congruence” with knowledge of equations and
their solutions. Based on the results of the pre-test, students did not find this connection.
The same conclusion was found out by [36], according to who university students in
the USA, future teachers of mathematics did not find linear congruences analogous to
equations. The high success of students in the pre-test in solving Diophantine equations was
probably conditioned by the existing connection with the term “equation” and students
learned a new algorithm for solving another type of equation. It is also evidenced by
the fact that some students solved Diophantine equations by choosing one unknown
as a parameter and then expressing the other unknown depending on the value of the
parameter. In rare cases, we also recorded a solution by trial and error. When solving
Diophantine equations, students showed faith in their own ability to solve the equation,
because they could use their already acquired knowledge and skills in solving equations. In
solving the congruences, the students relied on the limited possibilities of the memorized
“branched” algorithm. In the post-test, the students were divided into two groups for
Diophantine equations. One group of students (mainly those students who successfully
solved both problems on Diophantine equations in the pre-test) did not use congruence to
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solve a simpler problem. They preferred the already “proven” way of solving Diophantine
equations. This approach of students corresponds to the knowledge that when students
learn a new, more effective procedure, they do not always abandon the old procedure.
Instead, they use either the old procedure or the new one, depending on the situation.
Only with time and practice they stop using fewer effective methods [37,38]. In the second
(more complex) problem, they considered a method of solution—to use or not to use
congruences. According to their own statements, they considered which of the procedures
would lead to the result in a shorter way. In determining how to use as few computational
steps as possible, students analyzed the problem, demonstrating the ability to think of
higher order [39]. These students mastered the solution of congruences at a higher level of
knowledge, such as understanding, because they were able to evaluate the suitability of
using congruences to solve a given problem [40]. The second group (most students) solved
Diophantine equations using congruences, i.e., they evaluated the use of congruences
as a more efficient way of solving Diophantine equations. Replacing learned practices
with new more effective solutions are part of the development of strategic skills [33].
This group of students was also more successful in solving congruences. Overall, in the
post-test, the success of students in solving congruences increased significantly, mainly
due to their connection with the solution of equations. The number of unresolved tasks
decreased significantly.

In the post-test, there was also a statistically significant decrease in the time that
students needed to solve particular problems, which indicates an increase in the procedural
fluency of the use of learned algorithms. Procedural fluency is the ability to flexibly, accu-
rately, and efficiently perform learned problem-solving procedures (mostly algorithms) in
conjunction with the ability to assess the appropriateness of using a given procedure [33].
Students will acquire procedural fluency in the use of their strategic abilities to choose
between effective procedures. This finding indicates an increase in the conceptual under-
standing of the concept of “congruence” and also an understanding of the algorithm for
solving congruences. According to [41], experience in solving diverse problems using
developed procedural fluency in conjunction with experience in solving problems help
students gain new conceptual knowledge. The flexibility of procedural knowledge is
positively related to conceptual knowledge [42].

7. Conclusions

To understand professional problems, computer science students need a conceptual
understanding of the mathematical background of a given issue. This mathematical
knowledge is often far removed from the mathematical knowledge that students acquired
in previous mathematical education. In such a case, the teacher faces the problem of how
to present the new subject to students, because conceptual understanding requires the
connection of new knowledge with already acquired knowledge. Based on the results
of our research, one of the possible ways is to divide teaching into two phases. First, to
create an isolated island of procedural skills related to the subject matter and then, by
“meaningful” repetition, to create a link between the new and the already acquired, thus
ensuring the necessary conceptual understanding. In teaching congruences, we confirmed
that Diophantine equations are a suitable tool to support the development of conceptual
understanding of congruences. A certain degree of acquisition of procedural skills in
solving congruences, which students acquired in the first phase of the seminar, was a
suitable springboard for the use of congruences in solving equations. The search for similar
possibilities to connect the isolated requirements of professional subjects for the conceptual
understanding of mathematical concepts or procedures could contribute to the streamlining
of mathematical courses in non-mathematical study fields of universities.
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