o)

Check for
updates

An Approach to Adjust Effort Estimation
of Function Point Analysis

Huynh Thai Hoc®Y_ Vo Van Hai, and Ho Le Thi Kim Nhung

Faculty of Applied Informatics, Tomas Bata University in Zlin, Nad Stranemi 4511,
76001 Zlin, Czech Republic
{huynh_thai,vo_van, lho}@utb.cz

Abstract. This study presents a modified approach to adjust a software develop-
ment effort estimation. The AdamOptimizer-based regression model is adopted
to adjust and enhance the accuracy of effort estimation. This approach is derived
into three phases. The first step deals with the logarithmized formula of effort
estimation computed by Function Point Analysis and Productivity Delivery Rate.
The Adam-Optimizer-based regression model is examined in the second phase,
and the ISBSG repository 2020 release R1 is considered as a historical dataset in
this paper. Moreover, the K-Fold cross-validation technique is adopted to tunning
the training model. In the following phase, all results are evaluated by statisti-
cal significance and the goodness of fit measure. Finally, a proposed approach is
compared with others: Capers Jones, and the Mean Effort.

Keywords: Software effort estimation - FPA - Capers Jones - Adj-Effort -
AdamOptimizer - K-Fold

1 Introduction

Effort estimation of software development is a significant challenge in the process of
software project building [1-4]. This process is likely the first phase to estimate the
development resources (i.e., cost, time). The accurate estimation might lead to the proper
contribution to resources for a project. It is probably an important initial-step of project
planning. Underestimating or overestimating might cause less accuracy in allocating
the budgets, and then might be probably a significant cause of project failure [5]. This
problem might boost researchers to study it, and many techniques have been proposed
for the last decade regarding how to improve the effort estimation.

In general, there are two types of techniques used in software project effort estima-
tion, that are, non-algorithmic and algorithmic [1, 3, 6]. Non-algorithmic is a technique
that predicting the Effort might be based on either the expert’s opinion or analytical com-
parisons with the historical projects. For example, Expert Judgment, Analogy, Price-to-
win, Bottom-up, Top-up, Wideband Delphi, Planning Poker [1, 3, 7]. The algorithmic
technique is a mathematical-based approach that mainly focuses on algorithms such as
COCOMO, Use Case Points (UCP), Function Point Analysis (FPA).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Silhavy (Ed.): CSOC 2021, LNNS 230, pp. 522-537, 2021.
https://doi.org/10.1007/978-3-030-77442-4_45

An Approach to Adjust Effort Estimation of Function Point Analysis 523

Most algorithmic methods might mainly focus on optimizing factors such as the
proportion of effort estimation known as Productivity Delivery Rate (PDR) or environ-
mental factors that impact the development effort [5, 7-9]. These indicators impact the
measurement of software effort. The purpose of these optimations is to make them fitter
with the actual data. The better value of these indicators might lead to more accuracy
of the estimation. In order to obtain those targets, scientists proposed many approaches
to compute the predicted results and try to fit with the actual value. In their researches,
some applied regression models, such as least squares regression, multiple linear regres-
sion [5, 7-9]. The other integrated regression methods work with fuzzy models, deep
learning techniques [9, 10], etc.

Some studies presented other optimizable measures to compute the Effort of the
application development. Prokopova et al. [11] worked with the VAF factor to identify
its influence on the estimation of the effort size. Silhavy et al. [12] improved this Effort
by proposing a new CVS model, and dataset segmentation was applied to estimate it.
Moreover, Artificial neural networks (ANN) were also adopted by Wena et al. [13] to
do this estimation.

On the other hand, the term PDR is considered as the proportion of effort size.
This term has always been adopted to calculate the required software project effort by
multiplying with UCP size or FPA size.

Effort = Size x PDR €9)]

Additionally, Nassif et al. applied a fuzzy-based methodology to propose four levels
of Productivity based on a summation of environmental factors [14]. Moreover, the
relationship between project Productivity and environmental factors was also studied
by Azzeh et al. [15, 16]. They concluded that such indicators might be good factors for
Productivity prediction when observational projects are available. Besides, Haietal. [17]
have proposed Productivity as a Multiple Regression model with independent variables
(VAF, EI EO, EQ, ILF, EIF) in the measured Effort of function point analysis based on
the International Software Benchmarking Standards Group (ISBSG) 2018/release R2.
The authors report that the result might be better than the existing method, compared
with the Effort measured by Mean Productivity based on Eq. 1, and Capers Jones.

The purpose of this paper is to propose an adjusted technique to predict effort esti-
mation based on the original formula of FPA size (Eq. 1). The formula will be trans-
formed into a logarithm-based equation, and then apply the Regression Model to find
a good (best) fitness model for estimating Effort. The proposed technique evaluation
will be based on datasets extracted from the ISBSG repository released in August 2020.
This technique might be called an Adjust Effort Estimation of Function Point Analysis
(Adj-Effort).

The rest of the paper is structured as follows: Sect. 2 shows the Research Questions;
Sect. 3 presents the background of Function Point Analysis as well as the variant of
Effort Estimation; Sect. 4 illustrates the data pre-processing; Sect. 5 proposes the new
approach - the Adjust Effort Estimation by Adam-optimizer method; Sect. 6 discusses
the criteria validation; Sect. 7 presents the result and discussion; and conclusion — future
work is presented in the last section.

524 H. T. Hoc et al.

2 Research Questions

In order to conduct the proposed model is the “good-fitness-model” for adjusting effort
estimation, two research questions should be answered:

(I) RQI1: how close the real efforts are to the predicted regression model? Answer-
ing this question determine a statistical measure, including the Coefficient of
determination (R?), and adjusted RZ.

(2) RQ2: Is this a better-fitness model than Capers Jones and Original Effort method?
Answering this question is to determine the SSE, MAE, PRED(0.25), the minimised
SSE and MAE, and the maximised PRED(0.25). In addition, the paired t-test based
on the MAE measurement is examined [18].

H, : MAEagi—Efforr = MAECapersiones/OrginalEfforr- There is no estimation error
difference between these methods.

Hy : MAE capersiones | OriginaiEffort > MAEaqgj—Egffore: Estimation capability of project
size by the Adj-Effort might be more feasible than by Capers Jones and Original Effort
method.

3 Background

3.1 Function Point Analysis

Function Point Analysis (FPA) was first introduced in 1979 by Alan J. Albrecht when
he was a Program Manager of the Application and Maintenance Measurement Program
for IBM [19, 20]. It is a Function Point to count the functional size and complexity of
a software-based on user requirements [21]. His approach is to quantify the number of
External Inputs (EI), External Inquiries (EQ), External Outputs (EO), Internal Logic
Files (ILF), and External Interface Files (EIF) that are delivered by software projects. In
1984, the International Function Point Users Group (IFPUG) was established to define
the set of rules for the basic components (BCs), including transaction function types
(EL, EO, EQ) and data function types (EIF, ILF) [22]. The complexity weights of each
component are shown in Table 1.

Table 1. Complexity weights of components [19, 23]

Basic Components (BCs) Complexity Weight (CWs)

Low Medium Large
EI 3 4 6
EO 4 5 7
EQ 3 4 6
EIF 5 7 10
ILF 7 10 15

An Approach to Adjust Effort Estimation of Function Point Analysis 525

In the Counting Practices Manual, version 4.3.1 (2010) [24], the FPA is organized
by the IFPUG, which is accountable for the development as well as the improvement
of its rules. The IFPUG’s FPA is known as the original function point analysis and
is standardized by ISO/IEC 20926:2010. Additionally, there are four other Functional
Software Measurements (FSM) of ISO/IEC, including Markll, MESMA, COSMIC,
FISMA. These methods are out of the scope of this paper; they might be found in [25].

The FPA has a majority of characteristics that it is possible to employ to estimate
software development in the early phases of the project [26]. Firstly, function points
might be counted based solely on either requirements specifications or design specifica-
tions. It seems the initial phase of the projects. Secondly, they are unrelated to language
programming, specific technologies for developing, or any other data processing [23].
Moreover, non-technical users of software might be easier to understand the function
points because they are built based on the user’s external view of the system [27].

Table 2. General systems characteristics [19, 23]

GSC factors | Characteristic Description

F1 Data communications Does the system require backup and recovery?

F2 Distributed functions Are data required for communication?

F3 Performance Does the system include a distributed processing
function?

F4 Heavily used configuration | Is critical performance required?

F5 Transaction rate Will the system work during heavy loads?

F6 Online data entry Does the system require direct data input?

F7 End-user efficiency Do data inputs require multiple screens or
operations?

F8 Online update Are the main files up-to-date?

F9 Complex processing Are inputs, outputs, files, and queries intricate?

F10 Reusability Is internal processing complicated and complex?

F11 Installation ease Is the code designed for reuse?

F12 Operational ease Are conversions and installation included in
design?

F13 Multiple sites Is the system designed for multiple installations in
different locations?

F14 Facilitate change Is the application designed to make it easy for
users to make changes?

To count function points, a linear combination between function types (EI, EO,
EO, EIF, ILF) with appropriate three levels of complexity weights are established. This
function count is also known as Unadjusted Function Points (UFP). The UFP formula
is shown in Eq. 2.

5 3
UFP = Zi:l ijl BCs;j x CWs; 2)

526 H. T. Hoc et al.

where BCs;; is the count of component i at level j, and CWs;; is an appropriate weight
given in Table 1.

The final counting of function points is driven by multiplying UFP with adjustment
influent factors, General Systems Characteristics (GSC). These might help the counting
of UFP to be more accurate [27]. Additionally, VAF is considered as Value Adjustment
Factor described by the formula:

14
VAF = 0.65 + 0.01 x E , 1F,- X Rating jfiuence 3)
1=
Where F; is the influence of the GSC factor. There is a total of 14 factors impacting

the system. These factors are illustrated in Table 2, and the influence factors rating is
shown in Table 3.

Table 3. Influent factors rating [19, 23]

Influence Rating

None

Insignificant

Moderate

Significant

0
1
2
Average 3
4
5

Strong significant

The Adjusted Function Points (AFP) is then the following:
AFP = UFP x VAF 4)

As mentioned in Sect. 1, based on the AFP, the measurement of Software Effort
Estimation is shown in Eq. 5, where Effort (called Original Effort) is measured in person-
hours and AFP is considered as a software size.

Effort = AFP x PDR ®))

3.2 The Variant of Sofware Effort Estimation

Capers Jones’ Approach

From 1997 to 2007, Capers Jones proposed thumb rules to measure the sizing of software
project [28]. The first version was published in 1997, and then it was updated in 2003. In
2007, it continued to edit and become the IFPUG counting rules version 4.1. According
to the author [28], there are ten simple rules for software sizing estimation, which the
last four rules regarding schedules, resources, and costs. As mentioned in the 10" rule,

An Approach to Adjust Effort Estimation of Function Point Analysis 527
the estimating software development effort is employed by compiling the 7™ and 8™
rules. As a result, the work effort estimation is presented as the following [17, 28, 29]:

AFP
EffortCapers Jones = ——— X AFP 04

150 ©

where Effortcapers jones 18 the Effort measured in person-month; AFP divides 150 that
illustrates the staff size (the 7™ rule) [28] and AFP raises to power 0.4 present the
approximate schedule (the 8" rule) [28].

Original Effort with Mean Productivity — the Mean Effort

The Mean Effort is a predicted size to measure an estimated software development effort
based on Mean Productivity. It is computed by multiplying Adjusted Function Points
with mean Product Delivery Rate value - PDR .4, (Eq. 8). The PDR .4, is expressed
in Eq. 7, where n is the number of observed projects. This is a kind of Effort used as a
sample method to compare with other predicted efforts. Prokopova et al. (2018), or Hai
et al. (2020) have adopted the Mean Effort to evaluate the accuracy of their approaches
compared with it.

1 1
PDR ytean = ~ Zn PDR (7)

Effortysean = AFP x PDR pean ®)

4 Data Pre-processing

In this research, the ISBSG project repository Release 2020 will be adopted as the
historical dataset. The ISBSG has 251 recorded attribute values, 9592 projects. These
attributes are divided into many groups. The first group of these datasets is Rating. This
group contains an ISBSG rating code that is in order from high-quality reviewers to low-
quality reviewers, denoted A, B, C, or D. The second group is software age, it records the
year of the project, ranges from 1989 to 2019. The information of Development type is
also presented, it is categorized into three types, such as new development, enhancement,
and re-development. Furthermore, the group of attributes regarding Sizing (UFP, AFP,
VAF), Effort (Normalised Work Effort Level 1, Normalised Work Effort, Summary Work
Effort), Productivity (Normalised Level 1 PDR - unadjusted function points, Normalised
PDR, Pre 2002 PDR), Size Attributes (EI, EO, EQ, EIF, ILF) are recorded in these
datasets.

These attributes are considered as a majority of datasets. It is noted that Normalised
Level 1 Productivity Delivery Rate is the Productivity currently recommended by ISBSG
[30, 31]. Additionally, the other project-relevant information such as Effort Attributes
(Team Size Group, Resource Level), Tool Data, Project team (experience BA, IT, project
manager), and so on is also recorded in this dataset.

528 H. T. Hoc et al.

In this study, Summary Work Effort, a total effort in hours recorded against the
project, and Normalised Level 1 PDR will be used as the “Real-Effort” and PDR for
the training dataset. Moreover, due to Normalised Level 1 PDR is selected as a PDR in
Eq. 5 and 7, the value of AFP in the training dataset is also re-calculated by Eq. 4 based
on the value of UFP and VAF.

There are many projects in the ISBSG repository released in 2020, it contains all
9592 projects. However, this proposal solely chooses projects that have sufficient good
quality factors with the IFPUG-based development type. The following guidelines are
adopted to filter the datasets.

(1) As recommended by ISBSG as well as the selection in the publish [10, 17], the
research only chooses projects with data quality A and B. The other might be
insufficient credibility due to either significant data not being provided or one factor
or a combination of factors [30, 31], reducing the size of the dataset to 8619 projects.

(2) This paper mainly focuses on FPA based counting approach as the IFPUG, the size
is measured by MarkIl, MESMA, COSMIC, FISMA that is ignored, leaving only
6365 records.

(3) New development projects used solely [10], other types of project are considered
removed, resulting in the total projects to 1460

(4) The missing data on Summary Work Effort (Effort), Normalised Level 1 Produc-
tivity Delivery Rate (PDR), UFP, VAF are removed, and the missed AFP might be
recovered by Eq. 4, bring the remaining projects to 583.

S Regression-Based Adjusting Effort

A Regression Model is the most common method for identifying relationships between
factors of effort software estimation [3]. One of the factors is the dependent (response)
variable, and the others are independent (preditor) variables [32]. This relationship may
be used for predicting the values of the response variable for a given set of independent
variables. The outcome in this model can be examined based on the historical data.
This process is equivalent to optimizing the model’s suitable coefficients, including its
functional form and coefficients based on sample observational data.

A genre of a regression model is presented as Eq. 9, a linear regression model,
where the dependent variable (Effort) is represented by Y and the predictor variable
(AFP x PDR) by X; B is an Intercept Parameter, and p is called Regression Coefficient,
€ is depicted as the error residuals.

Y~ B+ p1X+e¢ ©

Figure 1 and Fig. 2, the histograms of software effort and adjusted function points,
illustrate that the selected dataset is not a normal distribution. In pact, this sub-dataset
might be adopted to attain a predicted effort. However, it might result in an inaccurate
outcome [6]. Nevertheless, after the Effort and the AFP are normalized by logarithmic
technique, their histograms are slightly normally distributed. These figures are shown in
Fig. 3 and Fig. 4. As a result, the prediction effort based on the historical dataset might
be obtained by a log-based regression model instead of Eq. 9.

An Approach to Adjust Effort Estimation of Function Point Analysis 529

The Histogram of Effort

175
150
>\125
=)
o:) 100
o
75 4
@
(=
]
25 1
00 20000 40000 60000 80000 100000 120000 140000
Effort - (Person-hour)
Fig. 1. The histogram of effort
The Histogram of AFP
140 1
120
)
o 100
c
U a0
3
o &
&
40
m 4

(=]

0 2000 4000 €000 8000 10000 12000 14000 16000
AFP

Fig. 2. The histogram of AFP

There are several steps to gain the log-based regression model. First, Eq. 5 is trans-
formed by the logarithmic method, and then the regression model is adopted on it.
These equations are given as Eq. 10, and 11, where In(Effort) as a dependent variable,
and In(AFP), In(PDR) as independent variables. Second, the excellent fitness model in
Eq. 11 might be obtained by minimizing the error residual (¢).

In(Effort) = In(AFP x PDR) = In(AFP) + In(AFP) (10)

In(Effort) = By + B1In(AFP) + B, In(PDR) + ¢ (11)

There are some approaches to minimize the error residual. Radek Silhavy et al.
(2015) have adopted the Multiple Least Square Regression method, namely AOM, to
improve UCP. However, Hoc et al. (2020) have used the Adam-Optimizer module [3]
to attain the predictive UCP. It is a kind of open-source, available in the TensorFlow

530 H. T. Hoc et al.

The Histogram of In(Effort)

040

030
L 025 1

@ ;
5 020
o

L;g_ 0.15 1

0.05

0.00 -

4 6 g 10 12
In(Effort) - (Person-hour)

Fig. 3. The histogram of In(Effort)

package [33], developing by the Google Brain team [33, 35]. Comparing with the AOM
on the same historical dataset, they concluded that their approach was better than the
AOM.

The Histogram of In(AFP)

Frequency
o =3 o o
N w & wn

(=]
[

o
o

6
In(AFP)
Fig. 4. The histogram of In(AFP)

Finally, due to the outperformance of the Adam-Optimizer [34, 35], this module is
applied to find suitable unknown values (8o, B1, B2) in Eq. 11. It means that the final
adjust Effort (Adj-Effort) is computed according to the formula:

In(Effort) ~ fo + In(AFPP') + In(PDR??) (12)

Effort &~ ePot+ I(AFPP1)+ In(PDRF2) (13)

Effort ~ ¢’ x AFPP' x PDRP (14)

An Approach to Adjust Effort Estimation of Function Point Analysis 531

5.1 Dataset Description

As mentioned in Sect. 4, the Adj-Effort technique will use 583 filtered projects of the
ISBSG repository released in 2020 as observational data. Figure 5 presents a boxplot of
the log-based dataset before (Fig. 5.a) and after (Fig. 5.b) removing outliers. As can be
seen, there are several noticeable outliers in that dataset. According to many researchers
[17], removing outliers is suitable for accurate and reliable software effort estimation
based on historical datasets. In this study, the interquartile range (IQR) method is adopted
to eliminate the outliers. If the value of In(Effort), In(PDR), and In(AFP) out of the range
from Q1 — 1.5 x IRQ to Q3 + 1.5 x IRQ, it might be considered to ignore, Q1 is the
lower quartile, Q3 is the upper quartile, and IRQ is expressed as the following:

IQR = Q3 — QI (15)

10 4 0 ‘ .
| - i . I
61 0 6 ==

- = I3
’ s , il

. g - 4 ==
0 _g i

0]

Ir'P.DR InEffort InAFP Ir.’IDR InEffort InAFP
(a) ®)

Fig. 5. The Boxplot of the observational dataset before (a) and after (b) remove outliers

Table 4 shows the descriptive characteristics of the logarithm of Summary Work
Effort before removing outliers (initial) and after removing outliers, where N stands for
the number of observed projects, 583 and 450, respectively. It is noted that the Mean
value is slightly equal on both datasets, 7.9793, after adopting outliers. Additionally,
the Standard Deviation, the value at 25%, 50%, and 75% are insignificantly different.
However, the Minimum and Maximum at Remove Outliers Dataset might be better than
the Initial dataset, compared with the others. As a result, the removed outliers-based
dataset is used in this research.

Table 4. Descriptive observed datasets — In(Effort)

Dataset |N Mean Standard | Minimum |25% 50% 75% Maximum
deviation

Initial 583 |7.9953 |1.4042 2.833 7.0148 |8.0044 |8.9344 |11.8072

Remove |450 |7.9793 |1.0344 5.8200 7.1323 | 8.0019 |8.7073 | 10.2955
outliers

532 H. T. Hoc et al.

5.2 Adj-Effort Setting

The Adj-Effort technique is processed in three steps - shown in Fig. 6. The first step
filters the raw dataset (2020) by adopting Data processing criteria — presented in Sect. 4.
Second, the selected sub-dataset, including Effort, PDR, and AFP are logarithmized to
make them a normal distribution. In the following phase of the process, the pre-processed
projects are randomly divided into two parts. 80% of the projects are used to train the
Adj-Effort model. The tested part — 20% of the projects are considered as unknown
projects, where the data on Effort, AFP are available in this dataset, they are considered
as real values; and the mean of the PDR (PDR /., = 11.2569), gained from the training
dataset, is used as a value of the PDR in the testing phase.

Normalized Dataset
Randomly ordered dataset

Raw Dataset
Logarithmized Effort, PDR, AFP

ISBSG (Release 08/2020)

(xTrain, yTrain)l (xTest, yTest)

}

Criteria

evaluation

Cross
validation

10-Fold

Criteria
Validation

Pre-processing Da-
taset

Fig. 6. The Adj-Effort with 10-Fold cross-validation flow diagram

Additionally, the non-cross validation and cross-validation methods are examined in
optimizing the Effort. 10-Fold cross-validation on the training set is adopted to examine
the performance and reliability of the proposed technique. The average 10-Fold-based
Effort is obtained in this phase. Finally, the effort models obtained from non-cross
validation and cross-validation are evaluated based on the criteria presented in Sect. 6 and
compared with Capers Jones and the Mean Effort method to achieve the final Adj-Effort.

An Approach to Adjust Effort Estimation of Function Point Analysis 533

6 Criteria Validation

This section presents the standard criteria to validate the accuracy of the effort estimation
of each method. MMRE is the Mean Magnitude of Relative Error, and PRED(x) is the
Prediction level. Both are computed based on the Magnitude of Relative Error (MRE).
SSE (Sum of Squared Errors) is a metric to compute modeling error variation. MMRE,
PRED(x), or SSE are the most well-known measurement of accurate effort estimation
[3, 36, 37]. Furthermore, MAE stands for the Mean Absolute Error; it represents the
difference between the actual and predicted values. Finally, R” or Adjusted R* are the
statistical indicators to present how close the data are to the fitted regression model. Their
values might from 0% to 100%, the higher R? / Adjusted R* means the more accuracy
of the proposed approach [38]. The mentioned criteria equations are given as follows:

SV 15— ¥

MAE = 16
N (16)
MRE:—yi_yil 17)
Yi
N
N MRE
MMRE:Z’— (18)
N
1 <N [1if MRE; <x
PRED(x) = — = 19
) N Zi {OOtherwise (19)
N A2
SSE = i()’i_)’i) (20)
A2
R =1 X (i =) 21
—_— - N——2 ()
Zi i—y
N—1
Adjusted R* =1 — ———— (1 — R? 22
juste ——(1-#) 22)

Where N is the number of observations, k is the number of preditors, y; the actual
value, y; the predicted value, y the mean of actual value and the x value is considered to be
0.25 - as recommended in many studies [7, 36, 39]. Some authors also use PRED(0.20)
or PRED(0.30) with little differing results [7].

7 Results and Discussion

In this section, the results of proposal efforts are discussed based on the criteria validation
in Sect. 6. It is noted that two predictive models are shown in Table 5. The first one is
obtained without applying cross-validation (non-cross validation). The second one is

534 H. T. Hoc et al.

attained by dividing the training dataset into 10-folds, one of them for validating and
the rest for training. As can be seen, the obtained models might be good fitness models
compared with the actual Effort due to both R? and Adjusted R* are strongly high [34].

These values might answer the RQ1 that predicted models might slightly close with the
real one.

Table 5. The predictive effort (Adj-Effort)

Regression models R-squared | Adj-R-squared
Adj-Effort Effort &~ 2.45994 x AFP089% » pDRO-35% | (8357 0.8349
Adj-Effort/10-Fold | Effort &~ 2.4639 x AFP%8813 « pDRO-3433 1 0.8866 0.8859

Table 6 shows a summary of the predictive statistics in terms of the effort that was
adopted to validate the accuracy between Adj-Efforts (non-cross validation and 10-
Fold cross-validation) and other methods (Capers Jones, the Mean Effort). As can be
seen, both the regression-based Adj-Efforts perform well and give relatively accurate
results with values of PRED(0.25) > 21% and MAE < 2530. It is noticeable that
both Capers Jones and the Mean Effort yields worse results than Adj-Effort models.
Although the MMRE of the Adj-Effort is slightly higher than Capers Jones, the results
gained from the Adj-Effort are likely more accurate than the ones estimated by Capers
Jones and the Mean Effort (i.e. MAE-Adj-Effort < MAE-Capers Jones/ Mean Effort,
PRED(0.25)-Adj-Effort > PRED(0.25)-Capers Jones/Mean Effort), and SSE-Adj-Effort
< SSE-Capers Jones/Mean Effort as well - matching the RQ2 requirement in Sect. 5.

Table 6. The performance effort estimation comparison methods

Adj-Effort | Adj-Effort | Capers Jones | Original
10-Fold effort
MMRE 1.17 1.01 0.99 1.26
MAE 2527.89 2447.72 4509.96 2815.93
PRED(0.25) |0.21 0.26 0.0 0.20
SSE 36355.40 |36020.93 |65488.69 39939.61
N 90 90 90 90

On the other hand, based on MAE, PRED(0.25), and SSE, it is possible to con-
duct that Adj-Effort with/without 10-Fold might be more accurate than the others. It
means that two models might be used as the best-predicted estimation. However, all
criteria obtained from Adj-Effort/10-Fold are all more significant than those obtained
from Adj-Effort without cross-validation. For example, PRED(0.25) attains the max-
imum, while MMRE, MAE and SSE reach the minimum when compared with Adj-
Effort/without cross-validation. It expresses the meaning that Adj-Effort/10-Fold might
be more accurate than the other one.

An Approach to Adjust Effort Estimation of Function Point Analysis 535

In addition, the paired t-test result of the hypothesis is given in Table 7. There
is a significant difference in MAE between Adj-Effort/10-Fold and Capers Jones
—(p value = 0.000004 < 0.05); the Mean Effort (p value = 0.0271210 < 0.05). Based
on the paired t-test results, one might reject the null hypothesis and accept the alterna-
tive hypothesis. This might reveal that Adj-Effort/10-Fold is the best in the Estimation
Accuracy Field.

Table 7. Adj-Effort/10-Fold hypothesis t-test results

Degree of | t-value | p-value
Freedom
Capers Jones | 89 4.89 0. 000004
Mean effort 89 2.25 0.0271210

8 Conclusion and Future Work

In this study, FPA-based effort estimation is proposed, namely Adj-Effort, and the
AdamOptimizer-based regression model is used to adjust and improve that estima-
tion. The model was trained and tested, employing 583 filtered projects of the ISBSG
repository 2020. The training dataset was divided into 10-Fold, and then applied
cross-validation to tunning the precise of the accurate predictive model.

As discussed in Sect. 7, the Adj-Effort is more consistent than Capers Jones and the
Mean Effort. Moreover, based on the analysed results in that section, we conclude that
with R? = 0.8866, and Adjusted R? = 0.8859, it is noticeable that the adjusted Effort
of projects gained from the Adj-Effort/10-Fold, overall, is close to the actual Effort of
projects. In other words, the real Effort of the project is considered to slightly fit with
the estimated Effort from the Adj-Effort/10-Fold.

However, as presented in Sect. 4, there are many factors in the ISBSG repository.
It might influence the quality of the estimation. Therefore, in our future research, a
statistical analysis of the different factors affecting the accuracy of effort estimation
software will be considered.

Acknowledgment. This work was supported by the Faculty of Applied Informatics, Tomas Bata
University in Zlin, under Project IGA/CebiaTech/2021/001.

References

1. Muketha, G.: A review of Agile software effort estimation methods. Int. J. Comput. Appl.
Technol. Res. 5(9), 612-618 (2016)

2. Trendowicz, A., Jeffery, R.: Software Project Effort Estimation. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-03629-8

536

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

H. T. Hoc et al.

Hoc, H.T., Van Hai, V., Le Thi Kim Nhung, H.: A review of the regression models applicable to
software project effort estimation. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo
2019 2019. AISC, vol. 1047, pp. 399-407. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31362-3_39

Van Hai, V., Le Thi Kim Nhung, H., Hoc, H.T.: A review of software effort estimation by
using functional points analysis. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo
2019 2019. AISC, vol. 1047, pp. 408-422. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31362-3_40

Seo, Y.-S., Bae, D.-H., Jeffery, R.: AREION: software effort estimation based on multiple
regressions with adaptive recursive data partitioning. Inf. Softw. Technol. 55(10), 1710-1725
(2013)

Nassif, A.B., Ho, D., Capretz, L.F.: Towards an early software estimation using log-linear
regression and a multilayer perceptron model. J. Syst. Softw. 86(1), 144-160 (2013)
Fedotova, O., Teixeira, L., Alvelos, H.: Software effort estimation with multiple linear
regression: review and practical application. J. Inf. Sci. Eng. 29(5), 925-945 (2013)
Silhavy, P., Silhavy, R., Prokopova, Z.: Analysis and selection of a regression model for the
use case points method using a stepwise approach. J. Syst. Softw. 125, 1-14 (2017)

Hoc, H.T., Van Hai, V., Le Thi Kim Nhung, H.: AdamOptimizer for the optimisation of use
case points estimation. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) CoMeSySo 2020.
AISC, vol. 1294, pp. 747-756. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
63322-6_63

Nassif, A.B., Azzeh, M., Idri, A., Abran, A.: Software development effort estimation using
regression fuzzy models. Comput. Intell. Neurosci. 2019, 8367214 (2019)

Prokopova, Z., Silhavy, P., Silhavy, R.: VAF factor influence on the accuracy of the effort esti-
mation provided by modified function points methods. In: Annals of DAAAM & Proceedings
(2018)

Silhavy, P., Silhavy, R., Prokopova, Z.: Categorical variable segmentation model for software
development effort estimation. IEEE Access 7, 9618-9626 (2019)

Wena, J., Lia, S., Linb, Z., Huc, Y., Huangd, C.: Systematic literature review of machine
learning based software development effort estimation models. Inf. Softw. Technol. 54(1),
41-59 (2012)

Azzeh, M., Nassif, A.B.: Project productivity evaluation in early software effort estimation.
J. Softw. Evol. Process 30, 2110 (2018)

Symons, C.R.: Function point analysis: difficulties and improvements. IEEE Trans. Softw.
Eng. 14(1), 2-11 (1988)

Heiat, A.: Comparison of artificial neural network and regression models for estimating
software development effort. Inf. Softw. Technol. 44(15), 911-922 (2002)

Hai V.V., Nhung H.L.T.K., Hoc H.T.: Productivity optimizing model for improving software
effort estimation (2020)

Ross, A., Willson, V.L.: Paired samples T-test. In: Basic and Advanced Statistical Tests.
SensePublishers, Rotterdam (2017)

Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the Joint
Share/Guide/IBM Application Development Symposium, pp. 83-92 (1979)

Behrens, C.A.: Measuring the productivity of computer systems development activities with
function points. IEEE Trans. Softw. Eng. SE-9(6) (1983)

IFPUG: International Function Point Users Group. http://www.ifpug.org/

Abran, A., Robillard, P.N.: Function points: a study of their measurement processes and scale
transformations. J. Syst. Softw. 25(2), 171-184 (1994)

Albrecht, A.J., Gaftney, J.E.: Software function, source lines of code, and development effort
prediction: a software science validation. IEEE Trans. Softw. Eng. SE-9(6), 639-648 (1983)

