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Viliam Ďuriš 1,* , Renáta Bartková 2 and Anna Tirpáková 1,3

����������
�������
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Abstract: The probability theory using fuzzy random variables has applications in several scientific
disciplines. These are mainly technical in scope, such as in the automotive industry and in consumer
electronics, for example, in washing machines, televisions, and microwaves. The theory is gradually
entering the domain of finance where people work with incomplete data. We often find that events
in the financial markets cannot be described precisely, and this is where we can use fuzzy random
variables. By proving the validity of the theorem on extreme values of fuzzy quantum space in our
article, we see possible applications for estimating financial risks with incomplete data.

Keywords: fuzzy quantum space; convergences on fuzzy quantum space; law of large numbers;
central limit theorem; Fisher–Tippett–Gnedenko theorem; Balkema; de Haan–Pickands theorem

1. Introduction

Selected limit theorems, which we shall deal with in the article, are well known
from Kolmogorov’s classical probability theory. Kolmogorov’s work [1] introduced the
theoretical axiomatic model in which events connected with the experiment form the
Boolean σ-algebra of subsets S of the set Ω. Thus, the probability is that for the σ-additive,
nonnegative final function P on S , with values in the interval [0, 1], if {An} is a sequence
of mutually exclusive events from S , then P(∪n An) = ∑

n
P(An) and P(Ω) = 1. Limit

theorems have a wide range of use in this theory. Their validity has already been proven
for other structures (spaces), e.g., MV-algebras defined in [2]. We want to extend their use;
therefore, in this article we prove that they also apply to sets in which we are working with
incomplete data. Specifically, they also apply to Fuzzy quantum space, and that is the most
significant finding in this article.

After some time, it became apparent that Kolmogorov’s classical model of the prob-
ability theory was not sufficient for describing quantum mechanics situations. Birkhoff
and von Neumann [3] referred to the fact that the set of experimentally verifiable state-
ments about the quantum mechanical system does not have the same algebraic structure as
Boolean algebra. Heisenberg [4] and Schrödinger [5] put forth the earliest attempts at the
mathematical formulation of quantum mechanics. Schrödinger presented the formalism of
wave mechanics, while Heisenberg proposed the formalism of matrix mechanics.

Zadeh [6] wrote about the theory of fuzzy sets in the 1960s. The current quantum
theory, basic mathematical model is that of von Neumann, grounded in the geometry
of Hilbert space (Varadarajan, [7]). If we define all closed subspaces of a given Hilbert
space (where, according to Varadarajan, the notion “a state of system” means a measure
of probability onM) as systemM, and such a definition is compared with that of the
P-measure on fuzzy sets (according to Piasecki [8]), it follows that both objects have a
similar algebraic structure. Piasecki submitted a model called soft σ-algebra in the fuzzy
set theory in 1985. His model demonstrated several characteristics identical to quantum
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logics. That comparison was first noted by Riečan [9] and then by Pykacz [10], and it led
us to the idea to build a quantum theory based on fuzzy sets. If A is a non-empty set
called a universum andM is a system of fuzzy subsets of universum A, i.e., the system of
functions on A with values in the interval [0, 1], then according to Riečan [9] we say that
(A,M) is an F-quantum space, also referred to by Dvurečenskij and Chovanec [11] as a
fuzzy quantum space, or by Dvurečenskij [12] as a fuzzy measurable space.

Many writers have attempted to prove some known assertions from the classical
probability theory in the theory of fuzzy quantum spaces. For example, Dvurečenskij [12],
Navara [13], and Navara and Pták [14,15] studied the existence of a fuzzy state on fuzzy
quantum space while Dvurečenskij and Riečan [16,17] examined joint fuzzy observables
and joint distributions of fuzzy observables. The representation theorem was proved by
Dvurečenskij, Kôpka, and Riečan [18]; it also includes the case in fuzzy quantum space.
Riečan [19,20] looked at the theory of an indefinite integral on fuzzy quantum space.
Mesiar [21–23], Piasecki [24,25], and Piasecki and Svitalski [26] investigated the extension
of the validity of the Bayes formula for fuzzy sets. Markechová [27–29] researched the
entropy on fuzzy quantum space, and Tirpáková and Markechová [30] investigated the
fuzzy analogies of some ergodic theorems and Birkhoff’s individual ergodic theorem and
maximal ergodic theorem for fuzzy dynamical systems [31].

The existence of the sum of fuzzy observables is a key fact for the analysis of many
assertions in the fuzzy sets theory. The existence of the sum of compatible fuzzy observables
was proved by Harman and Riečan [32].

Among the vital concepts of probability theory are the different kinds of convergence
of random variables. They are especially significant for parts dealing with the validity
of various forms of the law, the central limit theorem, and big numbers. As a result, the
problem of generalizing different types of convergence for fuzzy quantum space (A,M)
became topical. A few authors studied particular types of convergences on quantum logic.
Here, we mention the writings which were the basic material for the study of various types
of convergences of fuzzy observables on fuzzy quantum space (A,M): Dvurečenskij and
Pulmanová [33], Jajte [34], Ochs [35,36], Cushen [37], Gudder [38], and Révesz [39]. Some
types of convergences of fuzzy observables on fuzzy quantum space were dealt with by
Dvurečenskij [40], Riečan [41,42], Chovanec and Kôpka [43], Kôpka and Chovanec [44],
and others.

We formulated convergences and consequently proved many familiar limit theo-
rems [34,36,45] for fuzzy quantum space on the basis of the analogy of the probability
theory notions. As the central limit theorem refers to the limit distribution of the aver-
ages of independent, equally-distributed random variables, extreme value theory (EVT)
addresses the limit distribution of the maximums of the independent, equally-distributed
random variables [45,46]. EVT’s principal objective is to know or predict the statistical
probabilities of events that have never or rarely been observed. Kotz and Nadarajah [47]
indicated that the extreme value distributions could be traced back to Bernoulli’s 1709
work [48]. The theory of max-stable distribution functions, the counterpart of Feller stable
distributions [49], formed the basis of the probability background. First, the statistical
analysis of extreme values was performed in order to study flood levels. These days,
the areas of application include finance, meteorological events, insurance, industry, or
the environmental sciences [50]. Allow X1, X2, . . . , Xn to be a sequence of n, indepen-
dently and identically distributed random variables with distribution function F. The
corresponding ordered sequence in non-decreasing order is indicated by X1:n, X2:n, . . . ,
Xn:n, where Xi:n, i = 1, · · · , n represents the i-th order statistic. X1:n and Xn:n stand for the
sample minimum and the sample maximum, respectively. Then, examine the sequence
of maxima M1 = X1, Mn = Xn:n = max(X1, X2, . . . , Xn), for n ≥ 2, obtained from the
above sequence. All the sequence minimum results can be obtained from those of the
sequence maximum since mn = min(X1, X2, . . . , Xn) = −max(−X1,−X2, . . . ,−Xn). Mn’
s exact distribution can be obtained from the distribution function F. In fact, for all x ∈ R:

FMn(x) = P(Mn ≤ x) = P(X1 ≤ x, X2 ≤ x, · · · , Xn ≤ x) =
n
∏
i=1

P(Xi ≤ x) = Fn(x). For a



Mathematics 2021, 9, 438 3 of 14

single process, the behavior of the maxima can be described by the three extreme value
distributions: Gumbel, Fréchet and reversed Weibull distribution as suggested by the
Fisher–Tippett–Gnedenko theorem. One can combine these three distributions into a single
family of continuous cumulative distribution functions, known as the generalized extreme
value (GEV) distributions [50]. A GEV can be identified by the real parameter γ and the
extreme value index, and as a stable distribution it is a characteristic exponent α ∈ [0, 2].
Subsequently, several researchers have provided useful applications of extreme value
distributions. They may be found in several works [51–54].

2. Fuzzy Quantum Space

First, we recall the definitions of basic notions and some facts that will be used in the
following text. In the quantum space approach to the fuzzy quantum theory, the triple
(Ω, S, P) is replaced by the couple (A,M) where A is a nonempty set,M⊂ [0, 1]A is fuzzy
σ-algebra of fuzzy subsets of A, such that the following conditions are satisfied:

(i) if 1A(x) = 1 for any x ∈ A, then 1A ∈ M
(ii) if f ∈ M, then f ′1A − f ∈ M
(iii) ∨∞

n=1 fnsup
n

fn ∈ M, for any { fn}∞
n=1 ⊂M

(iv) if 1
2A
(x) = 1

2 for any x ∈ A, then 1
2A

/∈ M
Elements of the set M are called fuzzy subsets of the universe A. In particular,

if f is the characteristic function, we call it a crisp set. The symbols ∨∞
n=1 fnsup

n
fn and

∧∞
n=1 fninf

n
fn indicate a fuzzy union and a fuzzy intersection of the sequence of fuzzy sets

{ fn}∞
n=1 ⊂M, respectively. The event f ′1A − f ∈ M is the so-called fuzzy complement.

By Piasecki [8], the systemM is called a soft σ-algebra.
To define and prove the law of large numbers and the central limit theorem, we need

the following basic notions:

Definition 1. A fuzzy state on fuzzy quantum space (A,M) is a mapping m :M→ [0, 1] , such
that

(i) m( f ∨ (1A − f )) = 1 for every f ∈ M
(ii) if { fk}∞

n=1 is a sequence of pairwise orthogonal fuzzy subsets fromM, i.e., fi⊥ f j,
(

fi ≤ 1A − f j
)
,

whenever i 6= j, then m
(
∨∞

k=1 fk
)
=

∞
∑

k=1
m( fk)

According to Piasecki [8], a fuzzy state is called the σ-measure. The triplet (A,M, m)
where m is a σ-measure is called a fuzzy probability space. This structure was studied
in [55,56].

For illustration, we give the following example of a nontrivial fuzzy quantum space [55].

Example 1. Consider (A,M) where A = [0, 1], f : A→ A , f (x) = x,
M = { f , f ′, f ∨ f ′, f ∧ f ′, 0A, 1A} for every x ∈ A. It is evident that f ∨ f ′ 6= 1A. We define the
mapping m :M→ [0, 1] by the equalities m(1A) = m( f ∨ f ′) = 1, m(0A) = m( f ∧ f ′) = 0,
and m( f ) = m( f ′) = 1

2 . Then the triplet (A,M, m) is a fuzzy probability space.

Definition 2. A fuzzy observable on fuzzy quantum space (A,M) maps to x : B
(
R1)→M ,

satisfying the following properties:

(i) x(Ec) = 1A(x)− x(E) for every E ∈ B
(
R1)

(ii) if {En}∞
n=1 ⊂ B

(
R1), then x

(
∪∞

n=1En
)
= ∨∞

n=1x(En)

where B
(
R1) denotes the Borel σ-algebra of the real line R1 and Ec denotes the complement of

a set E in R1.
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Definition 3. Let f ∈ M. The mapping x f : B
(
R1)→M is defined by

x f (E) =


f ∧ f ′, i f 0, 1 /∈ E
f ′, i f 0 ∈ E, 1 /∈ E
f , i f 0 /∈ E, 1 ∈ E
f ∨ f ′, i f 0, 1 ∈ E

for every E ∈ B
(
R1) there is a fuzzy observable of fuzzy quantum space (A,M) called the indicator

of fuzzy set f ∈ M.

In particular, the null fuzzy observable of fuzzy quantum space (A,M) maps to
o : B

(
R1)→M defined by

o(E) =

{
0A, if 0 /∈ E
1A, if 0 ∈ E

where E ∈ B
(
R1).

If τ : R1 → R1 is a Borel measurable function and x is a fuzzy observable, then
τ ◦ x : E→ x

(
τ−1(E)

)
, E ∈ B

(
R1) is a fuzzy observable, too. In this way, we define the

functional calculus of fuzzy observables. For example, if τ(t) = t2, t ∈ R1, we write
τ ◦ x = x2 and the like. In particular, if a ∈ R1, then ax : E→ x

({
t ∈ R1 : at ∈ E

})
for any

E ∈ B
(
R1).

Let x be a fuzzy observable of fuzzy quantum space (A,M) and let Bx(t) = x((−∞, t)),
t ∈ R1. Dvurečenskij and Tirpáková [57] proved that the system

{
Bx(t) : t ∈ R1} of fuzzy

sets of fuzzy quantum space (A,M) is a one-to-one correspondence to fuzzy observable
x. Due to this result, the sum of any pair x and y of fuzzy observables of (A,M) can be
introduced as follows:

Definition 4. Let x and y be two fuzzy observables of fuzzy quantum space (A,M). If the
system

{
Bx+y(t) : t ∈ R1}, Bx+y(t) = ∨r∈Q

(
Bx(r) ∧ By(t− r)

)
, t ∈ R1, where Q is the set of

all rational numbers, then we determine fuzzy observable z of (A,M). We call it the sum of x and
y and write z = x + y.

In the text [57], it was proved that the sum of two observables always exists, and it
coincides with the pointwisely-defined sum of observables for σ-algebra of crisp subsets.
Moreover, x + y = y + x, (x + y) + z = x + (y + z) for fuzzy observables x, y, and z. The
subtraction of fuzzy observables x and y is defined as follows: x− y = x + (−y), where
(−y)(E) = y({t : −t ∈ E}), E ∈ B

(
R1). The mean value of a fuzzy observable on fuzzy

quantum space (A,M) was defined by Riečan [58] as follows: Let x be a fuzzy observable,
and let m be a fuzzy state. If the integral m(x)

∫
R1

tdmx(t) exists, then m(x) is called the

mean value of x in m, where mx : E→ m(x(E)) , E ∈ B
(
R1) is a probability measure on

B
(
R1). In addition, if u is a Borel measurable function, then m(u ◦ x)

∫
R1

u(t)dmx(t) in the

sense that if one side exists, then the second side exists too, and they are equal. Specially, if
u(t) = (t−m(x))2, then D(x)m

(
(x−m(x))2

)
is called the dispersion of fuzzy observable

x in fuzzy state m.

3. Convergences on a Fuzzy Space

Various types of convergences of random variables belong among important concepts
of the probability theory. Therefore, the notion of a fuzzy observable is an analogy to the no-
tion of a random variable. When defining different types of convergence and for the proof of
limit theorems on fuzzy quantum space (A,M), we used the method of F-σ-ideals, which
enabled us to reformulate and prove many of the known limit theorems of the classical prob-
ability theory for the fuzzy quantum space (A,M). The basic idea of the F-σ-ideals method
is described in [54], and we can shortly describe it as follows: Let m be a fuzzy state on fuzzy
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quantum space (A,M). Denote Im = { f ∈ M : m( f ) = 0}. Dvurečenskij and Riečan [16]
proved that Im is a σ-algebra of fuzzy quantum space (A,M). The relation “∼m” defined
on fuzzy quantum space (A,M) via f ∼m g if and only if m( f ∧ g′) = 0 = m(g ∧ f ′)
is the congruence, and, moreover, M/ ∼m=

{
f = { g ∈ M : g ∼m f } : f ∈ M

}
is the

Boolean σ-algebra (in the sense of Sikorski [59]), where complementation “ ′ ” in M/ ∼m

is defined with properties
(

f
)′

= f ′, f ∈ M and ∨
i

fi∨
i

fi, ∧
i

fi∧
i

fi, fi ⊂ M). Then, accord-

ing to these properties, the mapping h :M→M/ ∼m defined by h( f ) = f , f ∈ M is
a σ-homomorphism fromM onto M/ ∼m. The mapping µ from a Boolean σ-algebra
M/ ∼m into the interval [0, 1], defined by µ

(
f
)

= m( f ) for every f ∈ M/ ∼m, is a
probability measure on the Boolean σ-algebra M/ ∼m. According to the Loomis–Sikorski
theorem in [60], there is a measurable space (Ω,S) and σ-homomorphism ϕ from S onto
M/ ∼m, and due to Varadarajan [7] there are functions u, u1, u2, . . . : Ω→ R1, such that

ϕ
(

u−1
i (E)

)
= h ◦ xi(E), i = 1, 2, . . ., E ∈ B

(
R1
)

(1)

ϕ
(

u−1(E)
)
= h ◦ x(E) (2)

where h ◦ x is an observable of a Boolean σ-algebra M/ ∼m. Moreover, mapping
µϕ : S → [0, 1] , defined as µϕ(Λ) = µ(ϕ(Λ)), Λ ∈ S , is a probability measure on S .

Gudder and Mullikin [51] introduced many types of convergences for observables in
quantum logics. Inspired by their definition, Dvurečenskij and Tirpaková introduced [57]
the following definition:

Definition 5. We say that sequence {xn}∞
n=1 of fuzzy observables on fuzzy quantum space (A,M)

converges to fuzzy observable x

(i) in fuzzy state m, if for every ε > 0, we have

lim
n→∞

m((xn − x)([−ε, ε])) = 1

(ii) almost everywhere in the fuzzy state m, if for every ε > 0, we have

m
(

∞
∨

k=1

∞
∧

n=k
((xn − x)([−ε, ε]))

)
= 1

(iii) everywhere, if
∞
∧

p=1

∞
∨

k=1

∞
∧

n=k

(
(xn − x)

([
− 1

p
,

1
p

]))
= 1A

(iv) in a mean p, where 1 ≤ p < ∞, if

lim
n→∞

(
m|xn − x|p

)
= 0

(v) everywhere on f , if

f ≤
∞
∧

p=1

∞
∨

k=1

∞
∧

n=k

(
(xn − x)

([
− 1

p
,

1
p

]))
(vi) uniformly on f ∈ M, if for every ε > 0, there is an integer n0, such that

∀n ≥ n0 : (xn − x)([−ε, ε]) ≥ f

(vii) uniformly, if for every ε > 0, there is an integer n0, such that

∀n ≥ n0 : (xn − x)([−ε, ε]) = 1



Mathematics 2021, 9, 438 6 of 14

(viii) almost uniformly in fuzzy state m, if for every ε > 0 there is an element f ∈ M, such that
m( f ′) ≤ ε and a sequence {xn}∞

n=1 converges uniformly to x on f .

To prove the law of large numbers and the central limit theorem on fuzzy quantum
space (A,M), we also need the next theorem, which was proved in Dvurečenskij and
Tirpaková [57].

Theorem 1. Let m be a fuzzy state of fuzzy quantum space (A,M), x, x1, x2, . . . be fuzzy
observables of (A,M), and u, u1, u2, . . . be functions with properties (1) and (2). Then,

(A) The sequence of fuzzy observables {xn}∞
n=1 converges to fuzzy observable x

(i) in fuzzy state m if and only if the sequence of functions {un}∞
n=1 converges to u in

measure µϕ,
(ii) almost uniformly in fuzzy state m if and only if the sequence of functions {un}∞

n=1
converges almost uniformly to u in measure µϕ,

(iii) almost everywhere in fuzzy state m if and only if the sequence of functions {un}∞
n=1

converges almost everywhere to u in measure µϕ,
(iv) in mean p (1 ≤ p ≤ ∞) if and only if {un}∞

n=1 converges to u in mean p in measure
µϕ.

(B) If the sequence of fuzzy observables {xn}∞
n=1 converges to fuzzy observable x

(v) everywhere, then there is Λ ∈ S such that ϕ(Λ) = 1A and the sequence {un}∞
n=1

converges to u everywhere on Λ,
(vi) uniformly, then there is Λ ∈ S such that ϕ(Λ) = 1A and the sequence {un}∞

n=1
converges to u uniformly on Λ,

(vii) uniformly on f ∈ M, then there is Λ ∈ S such that ϕ(Λ) ≥ f and the sequence
{un}∞

n=1 converges to u uniformly on Λ.

Conversely, if the sequence of functions {un}∞
n=1 defined by (1), (2) converges to u

(viii) everywhere, then {xn}∞
n=1 converges to fuzzy observable x everywhere on f ∈ M, where

f = 1A,
(ix) uniformly, then {xn}∞

n=1 converges to fuzzy observable x uniformly on f ∈ M, where
f = 1A

(x) uniformly on Λ, Λ ∈ S , then fuzzy observables {xn}∞
n=1 converges to fuzzy observable x

uniformly on f ∈ M, where f = ϕ(Λ).

In the following, we will continue to introduce the notion of the independence of
fuzzy observables {xn}∞

n=1 in fuzzy state m. Now, we define the joint fuzzy observable of
fuzzy observables.

Definition 6. Let x1, x2, . . . , xn, n ≥ 2, be a finite system of fuzzy observables on fuzzy quantum
space (A,M). A joint fuzzy observable of fuzzy observables x1, x2, . . . , xn is a σ-homomorphism
Tn : B(Rn)→M , such that

(i) Tn(Ac) = Tn(A)′ for every A ∈ B(Rn)
(ii) Tn

(
∪n

i=1 Ai
)
= ∧n

i=1Tn(Ai), Ai ∈ B(Rn), i = 1, 2, . . . , n

(iii) Tn

(
π−1

i (E)
)
= xi(E) for every i ∈ {1, 2, . . . , n}, E ∈ B

(
R1)

where πi : Rn → R1 is the projection into the i-th coordinate.

In accordance with Riečan [61] and Riečan and Neubrunn [62], a sufficient condition
for the existence of the joint fuzzy observable of fuzzy observables x1, x2, . . . , xn, n ≥ 2,
meets the condition xi(∅) = xj(∅) for every i, j ∈ {1, 2, . . . , n}.
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Definition 7. Fuzzy observables x1, x2, . . . , xn on fuzzy quantum space (A,M) are independent
in fuzzy state m if for every n ≥ 2 there exists joint fuzzy observable Tn and

m(Tn(E1 × E2 × · · · × En)) =
n

∏
i=1

m(xi(Ei))

for any Ei ∈ B
(
R1), i = 1, 2, . . . , n.

According to the assumption of independence of the sequence of fuzzy observables
{xn}∞

n=1, for every n ≥ 2 there exists joint fuzzy observable Tn. To each fuzzy observ-
able xi : B

(
R1)→M , i = 1, 2, . . . , n exists the observable xi = h ◦ xi : B

(
R1)→M/ ∼m

and a real function ui : Ω→ R1 , such that xi(E) = ϕ
(

u−1
i (E)

)
. We define function

Φ : Ω→ R1, such that Φn(ω) = (u1(ω), u2(ω), . . . , un(ω)), ω ∈ Ω. If
Tn = h ◦ Tn : B(Rn)→M/ ∼m, then Tn = ϕ ◦ Φ−1

n . The main idea of the proof can
be illustrated by Figure 1.
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4. Limit Theorems for Fuzzy Quantum Space

Theorem 2 (Central limit theorem). Let {xn}∞
n=1 be a sequence of independent fuzzy observ-

ables, identically distributed in fuzzy state m, with mean value a and variance σ2 ∈ (0, ∞). Then,
for any s ∈ R1, the following equality holds:

lim
n→∞

m

(
1

σ
√

n

n

∑
i=1

(xi − na)(−∞, s)

)
=

1√
2π

s∫
−∞

e
−t2

2 dt

Proof. We define the real function kn : Rn → R1 as follows

kn(r1, r2, . . . , rn) =
1

σ
√

n

n

∑
i=1

(ri − na), ri ∈ R, i = 1, 2, . . . , n.

Calculate:

m
(

1
σ
√

n ∑n
i=1(xi − na)(−∞, s)

)
= m

(
Tn
(
k−1

n ((−∞, s))
))

= µ
(
Tn
(
k−1

n ((−∞, s))
))

=

= µ
(

ϕ ◦Φ−1
n
(
k−1

n ((−∞, s))
))

= µϕ

(
Φ−1

n
(
k−1

n ((−∞, s))
))

= µϕ({ω : kn(Φn(ω)) < s}),
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where

kn(Φn(ω)) =
1

σ
√

n

n

∑
i=1

(ui − na).

Regarding Theorem 1.7.5 [63], the validity of the following argument is obvious:

lim
n→∞

m
(

1
σ
√

n ∑n
i=1(xi − na)(−∞, s)

)
= lim

n→∞
µϕ({ω : kn(Φn(ω)) < s}) = 1√

2π

∫ s
−∞ e

−t2
2 dt. �

Theorem 3 (Weak law of large numbers). Let {xn}∞
n=1 be a sequence of independent fuzzy

observables, identically distributed in fuzzy state m, with the mean value a. Then,

x1 + x2 + . . . + xn

n
− a

converges to null fuzzy observable o in fuzzy state m.

Proof. We define real function kn : Rn → R1 as follows

kn(r1, r2, . . . , rn) =
1
n

n

∑
i=1

ri − a, ri ∈ R, i = 1, 2, . . . , n.

If Tn is the joint fuzzy observable of fuzzy observables x1, x2, . . . , xn, then we define
fuzzy observable yn = Tn ◦ k−1

n . According to Definition 5 (i) a sequence of fuzzy observ-
ables {yn}∞

n=1 converges to null fuzzy observable o in fuzzy state m, if for every ε > 0 it
holds that

∞

∑
i=1

m(yn(−ε, ε)) = 1.

Calculate:

m(yn((−ε, ε))) = m
(
Tn
(
k−1

n ((−ε, ε))
))

= µ
(
Tn
(
k−1

n ((−ε, ε))
))

=

= µ
(

ϕ ◦Φ−1
n
(
k−1

n ((−ε, ε))
))

= µϕ

(
Φ−1

n
(
k−1

n ((−ε, ε))
))

.

If kn(Φn(ω)) = 1
n

n
∑

i=1
ui(ω)− a, then according to Theorem 1 A) (i) the sequence of

fuzzy observables {yn}∞
n=1 converges to null fuzzy observable o in fuzzy state m if and only

if the sequence of the functions {kn(Φn)}∞
n=1 converges to null in measure µϕ. According

to Theorem 1.10.3 [61], the validity of the arguments is obvious. �

Theorem 4 (Strong law of large numbers). Let {xn}∞
n=1 be a sequence of fuzzy observables

independent in fuzzy state m, such that

∞

∑
i=1

1
i2

D(xi) < ∞.

Then,
1
n

n

∑
i=1

(xi −m(xi))

converges to null fuzzy observable o almost everywhere in fuzzy state m.

Proof. We define real function qn : Rn → R1 as follows:

qn(r1, r2, . . . , rn) =
1
n
(r1 − E(r1) + r2 − E(r2) + . . . + rn − E(rn)),
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where E(ri) is the mean value ri defined as E(ri) =
∫
R1

tdµϕ(t), ri ∈ R, i = 1, 2, . . . n. Then,

qn(Φn(ω)) = 1
n (∑

n
i=1(ui(ω)− E(ui(ω)))). If Tn is a joint fuzzy observable of fuzzy observ-

ables x1, x2, . . . , xn, then we define fuzzy observable zn = Tn ◦ q−1
n = 1

n (∑
n
i=1(xi −m(xi))).

According to Definition 5 (ii), a sequence of fuzzy observables {zn}∞
n=1 converges to null

fuzzy observable o almost everywhere in fuzzy state m if for any ε > 0 holds:

m(∨∞
k=1 ∧

∞
n=k (zn([−ε, ε]))) = 1.

Then, according to Theorem 1 A) (iii), a sequence of fuzzy observables {zn}∞
n=1

converges to null fuzzy observable o almost everywhere in fuzzy state m if and only if the
sequence of functions {qn(Φn)}∞

n=1 converges to null almost everywhere in measure µϕ.
According to Theorem 1.10.5 [61], the validity of the arguments is obvious. �

5. Extreme Value Theorems for Fuzzy Quantum Space

Let {xn}∞
n=1 be a sequence of independent, identically-distributed fuzzy observables

of fuzzy quantum space (A,M). For any n ≥ 1 we define the real function kn : Rn → R1

as follows:
kn(r1, r2, . . . , rn) = max{r1, r2, . . . , rn}.

Let Tn be the joint fuzzy observable of fuzzy observables x1, x2, . . . , xn. We define the
maximum fuzzy observables of x1, x2, . . . , xn as

M1 = x1, Mn = max{x1, x2, . . . , xn} = Tn ◦ k−1
n , n ≥ 2,

where Mn is the fuzzy observable.

Theorem 5. Let (ξn)
∞
n=1 be a sequence of independent random variables with the same distribution

function F : R→ [0, 1] in fuzzy state m. Put ηn = max(ξ1, · · · , ξn), n = 1, 2, · · · . Let there
exist an > 0, bn ∈ R such that

lim
n→∞

m
({

ω;
ηn(ω)− bn

an
< x

})
= lim

n→∞
Fn(anx + bn) = H(x),

where H : R→ [0, 1] is a continuous distribution function, increasing on an interval. Then, H
has one of three distributions with parameters µ, σ, α > 0 (Figure 2):

1. Gumbel Hµ,σ(x) = exp
(
−e−(

x−µ
σ )
)

, x ∈ R

2. Fréchet Hµ,σ,α(x) =

0, for x ≤ µ

exp
(
−
(

x−µ
σ

)−α
)

, for x > µ, α > 0

3. Weibull Hµ,σ,α(x) =

exp
(
−
(
− x−µ

σ

)α)
, for x ≤ µ, α > 0

1, for x > µ
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Theorem 6 (Fisher–Tippett–Gnedenko theorem). Let {xn}∞
n=1 be a sequence of fuzzy inde-

pendent observables identically distributed in fuzzy state m. Let there exist norming constants
an > 0, bn ∈ R and some non-degenerate distribution function H such that

lim
n→∞

m(
1
an

(Mn − bn)(−∞, t)) = H(t) for any t ∈ R.

Then, H belongs to the type of one of the following three types of standard extreme value
distributions: Gumbel, Fréchet, or Weibull.

Proof. We define the real function qn : Rn → R1 as follows:

qn(r1, r2, . . . , rn) =
1
an

(max{r1, r2, . . . , rn} − bn), ri ∈ R1, i = 1, 2, . . . , n.

Then qn(Φn(ω)) = 1
an
(max{u1(ω), u2(ω), . . . , un(ω)} − bn) and

m
(

1
an
(Mn − bn)(−∞, t)

)
= m

(
Tn
(
q−1

n ((−∞, t))
))

= µ
(
Tn
(
q−1

n ((−∞, t))
))

=

= µ
(

ϕ ◦Φ−1
n
(
q−1

n ((−∞, t))
))

= µϕ

(
Φ−1

n
(
q−1

n ((−∞, t))
))

= µϕ({ω : qn(Φn(ω)) < t}).

We have

H(t) = lim
n→∞

m
(

1
an

(Mn − bn)(−∞, t)
)
= lim

n→∞
µϕ({ω : qn(Φn(ω)) < t}).

Then, according to Theorem 5, the validity of the arguments is obvious. �

Now, we define the distribution function and excess distribution function on fuzzy
quantum space (A,M).
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Definition 8. Let m :M→ [0, 1] be a fuzzy state and x : B
(
R1)→M be a fuzzy observable

on fuzzy quantum space (A,M). For any t ∈ R1 we define function Fx : R1 → [0, 1] as

Fx(t) = m(x((−∞, t))).

Function Fx is called the distribution function of an observable x on fuzzy quantum space
(A,M).

Proposition 1. If the function Fx is the distribution function of an observable x on fuzzy quantum
space (A,M), then it satisfies the following conditions:

(i) Fx is non-decreasing
(ii) Fx is left continuous
(iii) lim

n→∞
Fx = 1

(iv) lim
n→−∞

Fx = 0

Proof.

(i) Let s < t, s, t ∈ R1, then x((−∞, s)) ≤ x((−∞, t)), it follows that

Fx(s) = m(x((−∞, s))) ≤ m(x((−∞, t))) = Fx(t).

We proved that the function Fx is non-decreasing.
(ii) Let tn ↗ t, tn, t ∈ R1, n = 1, 2, . . . , then x((−∞, tn))↗ x((−∞, t)), it follows that

Fx(tn) = m(x((−∞, tn)))↗ m(x((−∞, t))) = Fx(t).

We proved that the function Fx is left continuous.
(iii) Let tn ↗ ∞, tn ∈ R1, n = 1, 2, . . . , then x((−∞, tn))↗ x((−∞, ∞)) = 1A , it follows

that
Fx(tn) = m(x((−∞, tn)))↗ m(x((−∞, ∞))) = m(1A) = 1.

We proved that lim
n→∞

Fx = 1.

(iv) Let tn ↘ −∞, tn ∈ R1, n = 1, 2, . . . , then x((−∞, tn))↘ x((−∞,−∞)) = 0A , it fol-
lows that

Fx(tn) = m(x((−∞, tn)))↘ m(x((−∞,−∞))) = m(0A) = 0.

We proved that lim
n→−∞

Fx = 0. �

Now we define the excess distribution function F̃w on fuzzy quantum space (A,M).

Definition 9. For w > 0 we define excess distribution function F̃w on fuzzy quantum space
(A,M) as

F̃w(t) =
F̃(t + w)− F̃(w)

1− F̃(w)

for every 0 < t < ω
(

F̃
)

= sup
{

t; F̃(t) < 1
}

. Value ω
(

F̃
)

is called the right endpoint of

distribution function F̃.

Theorem 7 (Balkema, de Haan–Pickands). For a sufficiently large w, the excess distribution
F̃w converges to the generalized pareto distribution. Parameter β = β(w) is dependent on threshold
w, and for every α > 0

lim
w→ω(Fx)

sup
0≤t≤ω(Fx)−w

∣∣∣F̃w(t)− Gα,β(w)(t)
∣∣∣ = 0.
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Proof. Let xi : B
(
R1)→M, i = 1, 2, . . . , n be fuzzy observables. Then, there exist observ-

ables xi = h ◦ xi : B
(
R1)→M/Im and real functions ui : Ω→ R1, such that

xi(E) = ϕ
(

u−1
i (E)

)
. Then,

F̃(t) = m(x((−∞, t))) = µ(xi((−∞, t))) = µ
(

ϕ ◦ u−1
n ((−∞, t))

)
=

= µϕ

(
u−1

n ((−∞, t))
)
= µϕ({ω : un(ω) < t}) = F(t), t ∈ R

is the distribution function of real random variable u. It is obvious that

F̃w(t) =
F̃(t + w)− F̃(w)

1− F̃(w)
=

F(t + w)− F(w)

1− F(w)
= Fw(t).

�

6. Conclusions

The seminal theoretical results in probability theory are limit theorems. When using
random samples to estimate distributional parameters, we would like to know that as the
sample size gets larger, the estimates are probably close to the parameters that they are
estimating. In statistical inference, the central limit theorem is the dominant and most
useful theorem. It allows us to make the assumption that, for a population, a normal
distribution will occur regardless of what the initial distribution looks like for a sufficiently
large sample size. When the distribution shape is not known or the population is not
normally distributed, the theorem is used to make assumptions. The law of large numbers
is an invaluable tool that is expected to state definite things about the real-world results of
unexpected events. The law of large numbers is the postulate of statistics and probability
theory that states that the greater the number of samples are used from an event, the closer
the monitoring results will be to the average population. Thus, the law of large numbers
describes the stability of big random variables. Both the strong and weak laws refer to the
convergence of the sample mean to the population mean as the sample size gets bigger.

This paper generalizes the central limit theorem, the law of large numbers, and extreme
value theorems of classical probability theory to fuzzy quantum spaces. Extreme value
theory models rare events outside the range of allowable observations with high impact.
This method has become a widely-used tool for risk assessment in recent years. It is used
in the areas of insurance, banking, operational risk, market risk, and credit risk [52]. By
applying these limit theorems to the Atanassov set, it gives us the space to work with
incomplete data, which we can use in the area of finance. The basic advantage of fuzzy
logic is the ability to mathematically express information expressed verbally. Thanks to
this, fuzzy logic proves to be a very good tool for working with behavioral data. Behavioral
finance takes into account the human factor when making financial decisions. For this
reason, behavioral finance often uses linguistic data, and therefore it is appropriate to use
methods based on fuzzy logic to describe them. Behavioral finance is a financial field
examining the effect of social, cognitive, and emotional factors on the economic decisions
of individuals and institutions as well as the consequences of these decisions on market
prices [64].
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58. Riečan, B. Probability Theory on IF Events. In Algebraic and Proof-Theoretic Aspects of Non-Classical Logics; Lecture Notes in

Computer Science; Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V., Eds.; Springer: Berlin/Heidelberg, Germany,
2007; Volume 4460, ISBN 9783540759386. [CrossRef]

59. Sikorsk, R. Boolean algebras. In Ergebnisse der Mathematik und Ihre Grenzgebiete, 3rd ed.; Springer: Berlin/Heidelberg, Germany,
1964; p. 25.
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