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Lucjan Dobrowolski 3

1 Department Organic Chemistry, Institution Rzeszów University of Technology, Powstańców Warszawy 6,
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Abstract: The objective of the studies was to synthesize and characterize new mono- and
diesters with an imidazoquinolin-2-one ring with the use of 2,3-dihydro-2-thioxo-1H-imidazo[4
,5-c]-quinolin-4(5H)-ones and ethyl bromoacetate. The products were isolated at high yield and
characterized by instrumental methods (IR, 1H-, 13C-, and 15N- NMR, MS-ESI, HR-MS, EA). In order
to clarify the places of substitution and the structure of the derivatives obtained, molecular modeling
of substrates and products was performed. Consideration of the possible tautomeric structures of
the substrates confirmed the existence only the most stable keto form. Based on the free energy
of monosubstituted ester derivatives, the most stable form were derivatives substituted at sulfur
atom of enolic form the used imidazoquinolones. Enolic form referred only to nitrogen atom no 1.
The modeling results were consistent with the experimental data. The HOMO electron densities at
selected atoms of each substrate has shown that the most reactive atom is sulfur atom. It explained
the formation of monoderivatives substituted at sulfur atom. The diester derivatives of the used
imidazoquinolones had second substituent at nitrogen atom no. 3. The new diesters can be used as
raw material for synthesis of thermally stable polymers, and they can also have biological activity.

Keywords: ammonium thiocyanate; debenzylation; 3-hydroxyquinolinediones;
thioxoimidazoquinolinone ring; molecular modeling

1. Introduction

Presently, products with high thermal stability are demand by consumer market. Therefore, research
trend regarding the synthesis and analysis of the properties the materials which are thermally stable are
very popular. Polymers constitute a large group of substances characterized by such properties. There
are many different definitions of thermally stable polymers. According to Szczerba, a thermally stable
polymer does not degrade during long-term exposure, i.e., during 30,000 h at temperatures up to 170 ◦C
and does not change shape or melt when heated to 400 ◦C for a short time [1].

In turn, according to Marvel, thermally stable macromolecular compounds during prolonged
exposure, i.e., up to 25,000 h at temperatures below 300 ◦C do not undergo the thermal degradation.
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Moreover, thermally stable polymer does not change its shape and does not melt during short-term
temperature exposure, i.e., up to 300 h at 500 ◦C [2].

Thermal stability is closely related to the polymer structure. The symmetry of the macromolecule
structure, the presence of the side chains and the degree of crosslinking of the polymer also influence
significantly the rigidity of macromolecule. It should be emphasized that the presence of side
substituents in the main chain or linkers between polymer chains reduce the thermal stability of the
polymers [1,3–5]. A large part of polymers with increased thermal stability contain aromatic, including
heteroaromatic rings in their chains [6]. Polyimides and polyacrylates are the most known groups of
thermally stable polymers [7,8]. Studies on new polymers with increased thermal stability refer to
the synthesis of new macromolecules or the structure modification of the known polymers with the
use of compounds that guarantee the increased thermal stability. Low molecular weight compounds
containing an imidazoquinazoline or imidazoquinoline rings are examples of such substances.

In our preceding papers [9,10] we described the preparation and properties of monomers with
imidazoquinazoline ring. Diols with imidazoquinazoline ring were used to synthesis of linear
polyurethanes. The presence of imidazoquinazoline rings in polyurethane chains makes the polymer
is more stable at elevated temperature [11].

Imidazoquinolinones are also heterocyclic compounds and their ring can enhance the thermal
stability of polymers. Therefore, we decided to prepare esters with imidazoquinolinone ring. In one of
our previous papers [12] we described that the reaction of 1-unsubstituted 3-aminoquinolinediones 1
with potassium thiocyanate in boiling acetic acid yields two structurally diverse products. However,
if the starting compounds were substituted with a benzyl group at position 3, C-debenzylation
proceeded to give 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones 2 as the only reaction
products (Scheme 1). The analogous reaction was observed afterwards also with N-substituted
derivatives [13]. N(5)-substituted compounds 2 were prepared also from 3-hydroxyquinolinediones 3
by the reaction with NH4SCN in acetic acid [14].

Molecules 2020, 25, x FOR PEER REVIEW 2 of 19 

 

In turn, according to Marvel, thermally stable macromolecular compounds during prolonged 

exposure, i.e., up to 25,000 h at temperatures below 300 °C do not undergo the thermal degradation. 

Moreover, thermally stable polymer does not change its shape and does not melt during short-term 

temperature exposure, i.e., up to 300 h at 500 °C [2]. 

Thermal stability is closely related to the polymer structure. The symmetry of the macromolecule 

structure, the presence of the side chains and the degree of crosslinking of the polymer also influence 

significantly the rigidity of macromolecule. It should be emphasized that the presence of side 

substituents in the main chain or linkers between polymer chains reduce the thermal stability of the 

polymers [1,3–5]. A large part of polymers with increased thermal stability contain aromatic, 

including heteroaromatic rings in their chains [6]. Polyimides and polyacrylates are the most known 

groups of thermally stable polymers [7,8]. Studies on new polymers with increased thermal stability 

refer to the synthesis of new macromolecules or the structure modification of the known polymers 

with the use of compounds that guarantee the increased thermal stability. Low molecular weight 

compounds containing an imidazoquinazoline or imidazoquinoline rings are examples of such 

substances. 

In our preceding papers [9,10] we described the preparation and properties of monomers with 

imidazoquinazoline ring. Diols with imidazoquinazoline ring were used to synthesis of linear 

polyurethanes. The presence of imidazoquinazoline rings in polyurethane chains makes the polymer 

is more stable at elevated temperature [11]. 

Imidazoquinolinones are also heterocyclic compounds and their ring can enhance the thermal 

stability of polymers. Therefore, we decided to prepare esters with imidazoquinolinone ring. In one 

of our previous papers [12] we described that the reaction of 1-unsubstituted 3-aminoquinolinediones 

1 with potassium thiocyanate in boiling acetic acid yields two structurally diverse products. 

However, if the starting compounds were substituted with a benzyl group at position 3, C-

debenzylation proceeded to give 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones 2 as the 

only reaction products (Scheme 1). The analogous reaction was observed afterwards also with N-

substituted derivatives [13]. N(5)-substituted compounds 2 were prepared also from 3-

hydroxyquinolinediones 3 by the reaction with NH4SCN in acetic acid [14]. 

 

Scheme 1. Synthesis scheme of 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones (2). 

Compound 2, unsubstituted or substituted at nitrogen atom N(5), where R1 is hydrogen, phenyl 

or methyl group undergoes reaction with ethyl bromoacetate and mono- or disubstituted derivatives 

are formed (Scheme 2). The synthesis conditions, the structure analysis and characterization of those 

esters are the subject of this research. The calculations carried out by molecular modeling methods 

and their results are consistent with the experimental data. 

Scheme 1. Synthesis scheme of 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones (2).

Compound 2, unsubstituted or substituted at nitrogen atom N(5), where R1 is hydrogen, phenyl
or methyl group undergoes reaction with ethyl bromoacetate and mono- or disubstituted derivatives
are formed (Scheme 2). The synthesis conditions, the structure analysis and characterization of those
esters are the subject of this research. The calculations carried out by molecular modeling methods and
their results are consistent with the experimental data.
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2. Results and Discussion

2.1. Structure Analysis

Our effort was the preparation of thioxoimidazoquinolones bearing one or two ethoxycarbonylmethyl
groups (Scheme 2). Starting compounds 2 were prepared by known procedure from 3-hydroxyderivatives
3 by the reaction with ammonium thiocyanate in acetic acid [15].

The reactions of 2 with ethyl bromoacetate (EBA) were carried out using the molar ratios of 2 to
EBA 1:1.1, 1:2.4, and 1:4. The results of these reactions are given in Table 1.

Table 1. Results of the reaction of 2 with ethyl bromoacetate (EBA).

Starting
Compound Molar Ratio of 2: EBA Yield of 4 (%) Yield of 5 (%) Yield of 6a (%)

2a
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1:1.1 83 4 0

1:2.4 56 27 0

1:4 0 80 0

As can be seen from Table 1, the pure dialkylated products 5 arises only at molar ratio 1:4. At lower
molar ratios, a considerable quantity of monoalkylated products generate. From Table 1 it can also
be seen the high regiospecifity of the reaction. From several possibilities for alkylation compounds
2, the attack on the enolized C=S group always occurs (compounds 4). The attack of the second
molecule of ethyl bromoacetate on nitrogen atom in position 3 is dominant (compounds 5), while the
formation of compounds 6 (alkylated in positions 1 and 2) occurs only to a small extent (6a). Spectral
characterization of all obtained products was provided in Table 2. As presumed, the compounds
alkylated at two nitrogen atoms and without alkylation at the S-atom were not isolated.

Our attempts on cyclization of 4 with ammonium nitrate [15] were fruitless (only starting material
was isolated). Also experiments to convert of 5 to tetracyclic compounds by intramolecular Dieckmann
condensation in the presence of basic catalysts (sodium ethoxide, potassium t-butoxide, DMAP,
and DBU) were unsuccessful. In all cases, only starting material was isolated.

2.2. Molecular Modeling

Instrumental analysis of the compounds 2 shows that they exist in keto forms, while the
monosubstituted derivatives (4) were indicated with a substituent connected to the sulfur atom, so the
reaction proceeds with the enol form according Scheme 3.
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Table 2. 1H, 13C{1H} and 15N chemical shifts and 1J(15N, H) (Hz, ± 0.3 Hz) of compounds 4a–c, 5a–c, and 6a in DMSO.

Position
4a 4b 4c 5a 5b 5c 6a

δ(H) δ(C) δ(H) δ(C) δ(H) δ(C) δ(H) δ(C) δ(H) δ(C) δ(H) δ(C) δ(H) δ(C)

1 N - n.o. a - n.o. a - n.o. a - n.o. a - n.o. a - n.o. a - −224.1 a

2 CS - 149.0 - 148.8 - 149.8 - 151.1 - 151.4 - 151.9 - 148.4
3 N - n.o. a,b - n.o. a,d - n.o.a, e - −225.5 a - −225.7 a - 224.8 a - n.o. a

3a - 122.2 - 122.3 - 121.8 - 121.8 - 121.2 - 121.3 - 131.6
4 C=O - 154.4 - 154.3 - 153.9 - 154.7 - 154.1 - 154.2 - 156.5
5 N-R - −235.7 a - −242.4 a - −220.7 b - −234.8 a - −241.4 a - −220.1 a - −233.8 a

5a - 136.3 - 137.1 - 138.0 - 136.2 - 137.1 - 137.2 - 136.6
6 7.42 116.0 7.55 115.7 6.55 116.4 7.42 116.1 7.57 116.8 6.58 116.5 7.45 116.5
7 7.42 128.0 7.53 128.4 7.32 122.4 7.42 122.3 7.57 128.8 7.40 128.5 7.45 128.4
8 7.22 121.9 7.33 122.2 7.28 128.0 7.28 128.4 7.36 122.8 7.37 122.8 7.21 121.9
9 7.94 121.4 8.03 121.8 8.07 121.8 7.99 121.3 8.06 121.7 8.13 121.7 7.78 120.6

9a - 115.8 - 115.7 - 116.1 - 115.3 - 115.9 - 115.8 - 111.2
9b - 144.5 - 142.6 - 143.9 - 144.0 - 142.8 - 143.6 - 135.8

SCH2 4.22 33.7 4.23 33.7 4.26 33.7 4.22 34.7 4.24 34.6 4.32 34.7 4.19 35.1
COO - 168.6 - 168.6 - 168.6 - 168.3 - 168.3 - 168.2 - 168.3
OCH2 4.02 61.2 4.11 61.2 4.14 61.2 4.12 61.3 4.14 61.3 4.16 61.6 4.13 61.4
CH3 1.16 14.0 1.17 14.0 1.18 14.1 1.17 14.0 1.19 14.0 1.23 14.0 1.18 14.0

NCH2 - - - - - - 5.33 46.4 5.31 46.4 5.32 46.4 5.50 47.8
COO - - - - - - - 167.3 - 167.4 - 167.2 - 167.3
OCH2 - - - - - - 4.17 61.6 4.18 61.6 4.16 61.3 4.22 61.9
CH3 - - - - - - 1.22 14.0 1.22 14.00 1.23 14.0 1.20 14.0
1′(R) 11.60 88.0 c 3.69 29.0 - 138.5 11.76 88.8 c 3.64 28.7 - 138.5 11.71 89.2 c

2’(R) - - 7.34 129.6 - - - - 7.34 129.4 - -
3´(R) - - 7.64 130.0 - - - - 7.64 130.0 - -
4´(R) - - 7.56 128.7 - - - - 7.57 128.9 - -

a δ(15N); b δ(NH) = 13.67; c 1J(15N, H); d δ(NH) = 13.67; e.δ(NH) = 13.82.
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To clarify the course of the reaction, molecular modeling of the initial compounds were performed
and the energies (including Gibbs enthalpy) of possible tautomeric forms of the compounds 2
were calculated.

Compound 2a can occur in six tautomeric forms: One diketo, three keto-enol and two dienol,
while 2b and 2c can occur in one diketo and two keto-enol forms what is shown in Table 3.

Based on the calculated values of free energy, an analysis of conformer population was carried
out and the percentage shares of tautomeric forms of compounds 2 were calculated, which are listed in
the Table 4.

Compound 2, regardless of the presence and type of the substituent at nitrogen atom no. 5, occurs
in 99.99 mol% in the keto form. Since the most stable form of compound 2 is the keto form and the
product form structure indicated the reaction of the enol form (N(1)-SH) with EBA, it means that
the enolization of compound 2 occurs after mixing the reagents just before the reaction with EBA.
Such reaction pattern doesn’t depend on the type of the R substituent at nitrogen atom no. 5 (H,
Me, Ph).

Table 3. Possible tautomeric forms of compounds 2a, 2b, 2c.

CompoundForm 2a: R = H 2b: R =Me 2c: R = Ph

keto
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Table 3. Cont.

CompoundForm 2a: R = H 2b: R =Me 2c: R = Ph

enol N(3)-SH
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Considering that the reaction of the compounds 2 with EBA is a nucleophilic substitution, a place
of the substitution can be explained with the electron density of the potential nucleophilic reactive
places nitrogen atom no. 1 (N(1)), nitrogen atom no. 3 (N(3)), nitrogen atom no. 5 (N(5)), sulfur atom (S),
and oxygen atom (O)) in each keto/enol form of the substituted and unsubstituted at nitrogen atom no.
5 compound 2, see Figure 1.Molecules 2020, 25, x FOR PEER REVIEW 8 of 19 
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Figure 1. Highest occupied molecular orbitals (HOMO) for compound 2a, 2b, 2c. Isosurface value was
set to 0.02.

On this purpose, calculations of HOMO electron densities at selected atoms of molecular orbital [16]
were made for all forms of compound 2. Results shown in Table 5 imply that the highest share (50%)
is for the orbital of sulfur atom, and shares of the N(1), N(3), N(5) and O are 5%, 10%, 0%, and 5%,
respectively. Thus, in reaction with the EBA, the sulfur atom reacts as nucleophilic agent with the
highest probability. It confirms the assumption that enolization occurs just before the reaction of
compound 2 with EBA.

Table 5. HOMO electron densities at selected atoms.

Compound HOMO Electron Densities at Selected Atoms in Molecule [%]

N(1) N(3) N(5) S O

2a
keto

5 10 0 51 5

2b 5 0 - 51 5

2c 5 0 - 50 5

2a
enol N(1)-SH

- 4 5 5 16

2b - 4 - 4 17

2c - 4 - 4 16

In addition, the structure of the set reaction products of compounds 2 with EBA is confirmed
by the analysis of conformer population of monosubstituted derivatives of compounds 2. Based on
the calculated Gibbs enthalpy values, shares of monosubstituted derivatives obtained by the reaction
of 2 with EBA were calculated and shown in the Table 6. The shares of disubstituted derivatives of
compounds 2 are shown in the Table 7. In both tables, last column contains conformer symbol which
meaning is explained in Table 8. On the left (right) fragment of arch nitrogen atom No. 1 (3) has its
position, while in the middle, sulfur exists. Both nitrogen atoms are marked as circle while sulfur
atom is marked as triangle. If the figure (triangle or circle) is solid, it means that substituent chain is
placed over the plane of the rings-position below the plane is shown as a clear shape. If the shape
(circle/triangle) is below the arch, it means that substituent’s -OC2H5 fragment is over rings. Outside
of the rings position is described with figure position over the arch. The substituent’s chain plane
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inclination seen from the center of the rings can be to the right or to the left—what is marked as a short
line at the right or left side of the figure. Moreover, for 4a compound there is nitrogen atom No. 5,
which is described by a circle below the arch and not connected with the arch. It should be mentioned,
that there is a few compounds with substituent’s chains in plane of the rings—they are visualized
by a line (substituent chain is sticking outwards) or polyline (substituent chain is folded in plane).
The conformer structures of compounds 4 and 5 are given in Table 1S and 2S, respectively.

Table 6. Possible conformers of products of reaction of compounds 2 with ethyl bromoacetate—
monoderivatives.

Compound Place of
Substitution

Total Energy,
kJ/mol Percentage, mol% Conformer

Symbol

4a

S

−3387684.80 76.32

80.66

100
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Table 7. Possible conformers of products of the reaction of compounds 2 with ethyl bromoacetate—
bisderivatives. 

Compound Place of 
Substitution 

Total Energy, 
kJ/mol Percentage, mol% Conformer Symbol 

5a 

S, N(3) −4089228.82 30.97 

59.15 

100 

 

S, N(3) −4089229.05 28.18  

S, N(3) −4089226.63 11.47 

22.93 
 

S, N(3) −4089226.59 11.47 
 

S, N(3) −4089224.39 4.81 

9.54 
 

S, N(3) −4089224.44 4.73 
 

S, N(3) −4089224.09 4.17 

8.37 
 

S, N(3) −4089224.08 4.19  

6a 

S, N(1) (*) 0.02 

0.04 
 S, N(1) (**) 0.02 

5b 

S, N(3) −4192391.75 36.43 

68.44 

100 

 

S, N(3) −4192392.07 32.01  

S, N(3) −4192388.72 8.75 18.19 
 

N(5)

−3387673.62 0.84

1.67
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Table 6. Cont.

Compound Place of
Substitution

Total Energy,
kJ/mol Percentage, mol% Conformer

Symbol

4c

S

−3994263.56 63.39

67.50

100
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Table 7. Cont.

Compound Place of
Substitution

Total Energy,
kJ/mol Percentage, mol% Conformer

Symbol

5b

S, N(3) −4192391.75 36.43

68.44

100
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Table 8. Schematism of the conformer symbol.

Possibilities Sample Structure and
Explanations Ideogram

Place of substitution:

(a) N(1)

(b) S
(c) N(3)
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One can see that for the monoderivatives (Table 6), the percentage of compounds substituted at
sulfur atom (ideogram: Arch with object (line, polyline, triangle) connected in the middle) is over
four times bigger than other substitutions (~81, ~74, and ~67 mol.-% for compound 4a, 4b, and 4c,
respectively). Moreover, percentage of compounds substituted at sulfur atom with substituent chain in
plane of the rings (ideogram: Arch + line) is in all three cases (4a, 4b, 4c) many times higher than other
compounds (~76, ~70, and ~63 mol.-%, respectively). Compounds with the second highest percentage
(~7–~10 mol.-%) are these with substituent at nitrogen atom No. 1 (ideogram: Arch + circle connected
on the left side). Interesting fact, one can see for the compounds substituted at nitrogen atom No. 3
(ideogram: Arch + circle on the right side): A little percentage for compound 4a and 4b (~2 mol.-%)
but three-to-four times bigger percentage for compound 4c (~7 mol.-%), which can be related to the
presence of the phenyl ring at nitrogen atom No. 5.

Because of the big value of percentage for compounds substituted in plane of the rings at sulfur
atom (Table 6), it is not surprising that all bisderivatives compounds are substituted primarily at the
sulfur atom and secondly in another place (nitrogen atom No. 1 or 3). Surprisingly, as it is shown in
Table 7, the percentage of all compounds substituted at S and N(1) is extremely low, almost on the
verge of error (<0.02 mol.-%).

Percentage of bisderivatives substituted at sulfur atom with substituent chain over the rings
(ideogram: Triangle above arch) and nitrogen atom No. 3 with substituent chain (ideogram: Circle at
right is out of the arch), in all of three cases (5a, 5b, 5c) is about 30 mol.-%. Worth noting is the fact that
this is for only six isomers (three pairs of enantiomers), where the chains of substituents are positioned
alternately (over-below the plane of the rings). Each of isomers with the same both substituent’s chains:
Over or below the plane, over or outside the rings, and has a mole percentage less than 10 mol.-%.

2.3. Thermal Properties

In order to assess a thermal stability of the obtained mono- and diesters with imidazoquinolinone
ring, thermogravimetrical analysis was performed.

TG and DTG curves of the diester were shown in Figure 2 on the example of compound 5c.
Based on thermogram in Figure 2 and the shape of TGA curve and number of peaks on DTG curve,

it is seen that decomposition of diester 5c occurred in about five stages. The first stage of degradation
seemed to occur in the temperature range of 120–138 ◦C and was accompanied by ∆m1 = 10.54% of
mass loss. Nevertheless, this stage did not refer to degradation but it was related to water evaporation.
All obtained mono- and diester are highly hygroscopic and sensitive to moisture from the atmosphere.
The water presence was confirmed by DSC measurement.

On DSC thermogram shown in Figure 3, endothermic peak with the peak temperature at 134.63 ◦C
was visible. In second heating, no peak was observed at that temperature range. The peak presence
upon first heating and its lack during second heating proved water evaporation [17,18].

The real first stage of diester 5c degradation appeared in the temperature range 210–305 ◦C
and was accompanied by 19.64% of mass loss. It was connected with one ethoxycarbonylmethylene
group degradation.

The second stage was observed in the range of 305–370 ◦C with a mass loss of 19.22% and
indicated degradation of the second ethoxycarbonylmethylene group. Based on the turn of the
ethoxycarbonylmethylene group appearance at imidazoquinolinone ring, ester groups degrade in
reverse turn. First, the ester group present at nitrogen atom no. 3 undergoes degradation and next
that one at sulfur atom. A similar situation took place in the case of hydroxyethyl derivatives of
2H,6H-1-phenylimidazo[1,5-c]quinazoline-3,5-dione [10].
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The third stage of degradation was in the range of 370–467 ◦C and was related to the cleavage of
sulfur atom. The temperature of maximum mass loss rate at this stage was 381 ◦C and the mass loss
was ∆m3 = 7.8%.

The fourth stage of diester 5c degradation was the last stage. It took place in the range of
467–600 ◦C and was related to the decomposition of the imidazoquinolinone ring.

The residue at 600 ◦C of 10.19 wt.-% was probably related to the formation of non-volatile complex
structures composed of condensed aromatic rings.

Due to the presence of imidazoquinolone rings, the synthesized esters have good thermal stability,
thus they can be used to modification of thermal stability of polymers, similar as other monomers with
heterocyclic rings [19–23].
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3. Materials and Methods

3.1. Materials

2-Thioxoimidazoquinolin-2-ones 2 were obtained from 3-hydroxyquinoline-2,4-diones 3 according
to procedure [15]. The rest reagents were purchased and used as obtained. N,N-Dimethylformamide
(DMF), pure for analysis, ethyl bromoacetate, pure for analysis, potassium carbonate, pure for
analysis, chloroform, pure for analysis, ammonium nitrate, sodium ethoxide, potassium t-butoxide,
4-(Dimethylamino)pyridine (DMAP), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were purchased
from Sigma-Aldrich (Darmstadt, Germany).

3.2. Syntheses

General Procedure for the Reaction of Compounds 2 with Ethyl Bromoacetate
To the solution of compound 2 (10 mmol) in DMF (40 mL) was added powdered potassium

carbonate (40 mmol) and ethyl bromoacetate in quantities given in Table 1. The mixture was stirred at
40 ◦C for 4 h and extracted with chloroform (4 × 50 mL). Collected extracts were washed with water
(3 × 40 mL), dried with anhydrous sodium sulfate and evaporated to dryness. The residue was column
chromatographed. Yields of pure product are given in Table 1.

Ethyl 2-((4-oxo-4,5-dihydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)acetate (4a). Product characterization:
Colorless solid, melting point 218–222 ◦C (from ethyl acetate). EA: % calcd (found) for C14H13N3O3S
(303.34): C 55.43 (55.35), H 4.32 (4.10), N 13.85 (13.68), S 10.57 (10.27). IR (KBr): 3338, 3085, 3032, 2979,
2918, 1730, 1649, 1549, 1479, 1462, 1421, 1353, 1334, 1307, 1252, 1201, 1172, 1161, 1110, 1026, 969, 932,
895, 868, 851, 817, 776, 750, 720, 685, 660, 640, 600, 562, 503, 468 cm−1. 1H, 13 C{1H}, and 15N NMR data
are referred in Table 2. EI-MS (m/z, %) EI-MS: 304.04 (32%), 276.04 (7%), 258.03 (100%), 230.04 (95%),
216.02 (18%), 186.07 (16%). ESI-MS (m/z): 303 [M + H]+, 326 [M + Na]+.

Ethyl 2-((4-oxo-5-methyl-4,5-dihydro-3H-imidazo[4,5-c]-quinolin-2-yl)thio)acetate (4b). Product characterization:
Colorless solid, melting point 231–237 ◦C (from benzene).EA: % calcd (found) for C15H15N3O3S (317.33):
C 56.77 (56.71), H 4.76 (4.68), N 13.24 (13.05), S 10.10 (10.03).IR (KBr): 3441, 3083, 2982, 2926, 1730, 1649,
1573, 1481, 1454, 1427, 1404, 1356, 1301, 1256, 1222, 1176, 1164, 1117, 1028, 975, 949, 901, 868, 818, 756,
736, 711, 697, 679, 654, 571 cm−1. 1H, 13 C{1H}, and 15N NMR data are referred in Table 2. EI-MS (m/z,
%): 318.09 (9%), 290.06 (7%), 272.05 (100%), 244.05 (61%), 230.04 (18%). HR-MS:[M+] 318.0905; [M+ + 1]
319.0939; [M+ + 3] 320.0861.

Ethyl 2-((4-oxo-5-phenyl-4,5-dihydro-3H-imidazo[4,5-c]-quinolin-2-yl)thio)acetate (4c). Product characterization:
Colorless solid, melting point 207–210 ◦C (from benzene/hexane). EA: % calcd(found) for C20H17N3O3S
(379.39): C 63.31 (63.51), H 4.52 (4.47), N 11.08 (10.96), S 8.45 (8.41). IR (KBr): 3090, 3036, 2975, 2927, 2753,
1722, 1641, 1571, 1491, 1474, 1448, 1413, 1387, 1353, 1307, 1271, 1225, 1183, 1145, 1095, 1073, 1051, 1024,
975, 924, 900, 861, 842, 814, 760, 710, 678, 659, 575, 555, 520, 448 cm−1. 1H, 13 C{1H}, and 15N NMR data
are referred in Table 2. EI-MS (m/z, %): 380.11 (7%), 352.07 (6%), 290.06 (7%), 334.06 (82%), 306.07 (100%),
292.05 (57%), 265.04 (37%), 259.07 (10%), 237.05 (11%), 205.08 (8%), 186.07 (9%). HR-MS: [M+] 380.1060;
[M++1] 381.1094; [M++3] 382.1015.

Ethyl 2-((3-(2-ethoxy-2-oxoethyl)-4-oxo-4,5-dihydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)acetate (5a). Product
characterization: Colorless solid, melting point 200–204 ◦C (from ethyl acetate). %). EA: % calcd
(found) for C18H19N3O5S (389.37): C 55.52 (55.68), H 4.92 (4.89), N 10.79 (10.75), S 8.24 (8.17). IR (KBr):
3453, 3165, 3126, 3052, 2986, 2846, 1738, 1662, 1556, 1466, 1436, 1376, 1304, 1224, 1174, 1098, 1025, 965,
898, 875, 762, 724, 701, 681, 669, 597, 512, 456 cm−1. 1H, 13 C{1H}, and 15N NMR data are referred in
Table 2. EI-MS (m/z, %): 390.11 (10%), 362.08 (8%), 344.07 (25%), 316.4 (15%), 286.06 (37%), 258.03
(100%), 242.04 (40%), 230.04 (98%), 216.02 (12%), 198.07 (17%), 186.07 (40%). HR-MS: [M+] 390.1114;
[M+ + 1] 391.1148; [M+ + 3] 392.1069.
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Ethyl 2-((3-(2-ethoxy-2-oxoethyl)-4-oxo-5-methyl-4,5-di-hydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)- acetate
(5b). Product characterization: Colorless solid, melting point 129–132 ◦C (from benzene/hexane). EA:
% calcd (found) for C19H21N3O5S (403.45): calcd C 56.57 (56.75), H 5.25 (5.33), N 10.42 (10.46), S 7.95
(7.86). IR (KBr): 3452, 3067, 2984, 2936, 2904, 1734, 1653, 1577, 1503, 1466, 1443, 1416, 1378, 1707, 1264,
1224, 1159, 1117, 1095, 1029, 980, 946, 898, 874, 859, 780, 755, 714, 677, 657, 573, 551, 480 cm−1. 1H,
13 C{1H}, and 15N NMR data are referred in Table 2. EI-MS (m/z, %): 404.13 (24%), 376.10 (15%), 358.08
(37%), 330.05 (17%), 300.08 (65%), 272.05 (100%), 256.05 (18%), 242.04 (61%), 230.04 (18%) 200.08 (16%).
HR-MS: [M+] 404.1270; [M+ + 1] 405.1306; [M+ + 3] 406.1226.

Ethyl 2-((3-(2-ethoxy-2-oxoethyl)-4-oxo-5-phenyl-4,5-di-hydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)- acetate
(5c). Product characterization: Colorless solid, melting point 129–131 ◦C (from benzene/hexane). EA:
% calcd (found) for C24H23N3O5S (465.46): C 61.93 (61.75), H 4.98 (5.17), N 9.03 (8.96), S 6.89 (6.79). IR
(KBr): 3034, 2984, 2934, 1755, 1660, 1576, 1510, 1491m, 1462, 1440, 1417, 1376, 1310, 1261, 1219, 1200,
1175, 1148, 1127, 1096, 1024, 967, 896, 863, 847, 804, 767, 700, 679, 583, 531 cm−1. 1H, 13 C{1H}, and
15N NMR data are referred in Table 2. EI-MS (m/z, % 466.14 (22%), 438.11 (10%), 420.10 (24%), 393.07
(10%), 362.10 (48%), 334.06 (100%), 318.08 (10%), 306.07 (32%), 278.06 (14%), 262.10 (14%), 247.08 (8%).
HR-MS: [M+] 466.1429; [M+ + 1] 467.1464; [M+ + 3] 468.1385.

Ethyl 2-((1-(2-ethoxy-2-oxoethyl)-4-oxo-4,5-dihydro-1H-imidazo[4,5-c]chinolin-2-yl)thio)acetate (6a). Product
characterization: Colorless solid, melting point 235–237 ◦C (from ethanol). EA: % calcd (found) for
C18H19N3O5S (389.43): C 55.52 (55.43), H 4.92 (4.84), N 10.79 (10.65), S 8.23 (8.07). IR (KBr): 3457, 3174,
3016, 2973, 2876, 1743, 1680, 1549, 1514, 1456, 1428, 1403, 1370, 1350, 1309, 1225, 1174, 1117, 1023, 977,
941, 903, 873, 802, 755, 725, 687, 670, 565, 514 cm−1. 1H, 13 C{1H}, and 15N NMR data are referred in
Table 2. ESI-MS: 389 ([M+H]+, 412 [M+Na]+, 428 [M+K]+.

1H-NMR spectra of products are given in Figures S1–S5.

3.3. Analytical Methods

Melting points were determined on a Kofler block (Vienna, Austria).
IR (KBr) spectra were recorded on a Smart OMNI-Transmission Nιcolet iS10 spectrophotometer

(Waltham, MA, USA).
The 1H, 13C{1H}, and 15N NMR spectra were recorded on a Bruker Avance III HD 500 spectrometer

(500.13 MHz for 1H, 125.76 MHz for 13C{1H}, and 50.68 MHz for 15N) in DMSO-d6. 1H and 13C
chemical shifts are given on the δ scale (ppm) and are referenced to internal TMS (δ = 0.0). 15N chemical
shifts were referred to external neat CH3NO2 in a co-axial capillary (δ = 0.0). All 2D experiments
(gradient-selected (gs)-COSY, gs-TOCSY, gs-NOESY, gs-HMQC, gs-HMQC-TOCSY, gs-HMQC-RELAY,
and gs-HMBC) were performed using manufacturer’s software (TOPSPIN 3.5, Rheinstetten, Germany).

The electrospray mass spectra (ESI-MS) were recorded using an amaZon X ion-trap mass
spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray ion source.
All experiments were conducted in both positive and negative polarity mode. Individual samples (with
a concentration of 500 ng·mL−1) were infused into the ESI source as methanol/water (1:1, v/v) solutions
via a syringe pump with a constant flow rate of 3 µL·min−1. The other instrumental conditions were as
follows: Electrospray voltage of ±4.2 kV, capillary exit voltage of ±140 V, drying gas temperature The
GC-MS analyses were measured with Shimadzu GC-MS QP-2010 with quadrupole mass detector and
column EQUITY 1 (30 m, 0.32 mm, 1 µm). Temperature program: 100 ◦C/7 min, 30 ◦C/min, temperature
of spray 250 ◦C. All experiments were carried out at constant linear rate of 52 cm/s. HR-MS spectra
were recorded by micrOTOF-QII (Agilent Technologies, Santa Clara, CA, USA), and calibration was
performed with TuneMIX (Agilent Technologies, Santa Clara, CA, USA). Full-mass range 50–750 m/z.
Full mass resolution 140,000. MS/MS parameters: Type of HCD fragmentation (high energy collision
dissociation), CE (collision energy) 35. Spray voltage positive ion mode 4100 V. Sheath gas 10 arbitrary
units. Auxiliary gas 0 arbitrary units. Ion transfer temperature 320 ◦C. Vaporisation temperature
250 ◦C.
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Column chromatography was carried out on silica gel (Merck, grade 60, 70–230 mesh) using
successive mixtures of chloroform/ethanol (in ratios from 99:1 to 8:2) (Figure S1) or benzene/ethyl
acetate (in ratios from 99:1 to 8:2) (Figure S2).

Reactions as well as the course of separation and also the purity of all substances were monitored
by TLC (elution systems benzene/ethyl acetate (4:1) (Figure S3), chloroform/ethanol (9:1 and 1:1)
(Figures S4 and S5), and chloroform/ethyl acetate (7:3) (Figure S6) on Alugram® SIL G/UV254 foils
(Macherey-Nagel, (Dueren, Germany).

Elemental analyses (C, H, N, S) of the obtained compounds were performed with an analyser
Vario EL III C, H, N from Elementar Company (Langenselbold, Germany).

The thermogravimetric analysis of mono- and diesters was performed in the ceramic crucible using
microthermogravimeter Mettler Toledo 851e Prague, Czech republic). The measurement conditions
were as follows: Sample weight: 7–8 mg, temperature range: 20–600 ◦C, atmosphere: Argon, heating
rate 10 ◦C/min.

Thermal measurements were carried out using the standard differential scanning calorimetry
(DSC) a TA 2920 from TA Instruments, Inc. (New Castle, DE, USA). This calorimeter is the heat-flux
type and use a mechanical refrigerator to cool the sample. All experiments were performed in a nitrogen
atmosphere with a constant flow rate of around 50 mL/min [24]. The series of experimental heat flow
rates were obtained by standard DSC at a heating rate of 10 deg/min after previous cooling also at
10 deg/min. The temperature and heat flow rate calibration in the DSC apparatus was performed using
parameters of melting indium [Tm(onset) = 156.6 ◦C, ∆Hf = 28.45 J·g (3.281 kJ/mol)], [24]. The masses
of the samples used for the DSC measurements were 10–30 mg. The thermal data were collected from
the first and second heating run after controlled cooling. By the standard DSC measurements, total
heat flow rate was obtained for investigated samples.

The molecular modelling was performed using a set of computational methods based on the
electron density of the tested compounds in the stationary state, i.e., density functional theory DFT [25],
with use the Gaussian 09 application [26]. The B3LYP functional was selected as the most suitable for the
tasks associated with organic compounds. The quantum-mechanical calculations were performed using
the 6-311++g(d,p) basis set [27], with Grimme dispersion correction (D3 version) which considered
intramolecular hydrogen bonds and electrostatic interactions [28]. The charge value was 0 (zero)
and spin state value was 1, because the calculated models of molecules were neutral, in single state.
The values of the mole percentage were calculated on the basis of Gibbs free energy (enthalpy). Gibbs
free energy was calculated at temperature 298.15 K. Frequency calculations were performed at the same
level of theory as the geometry optimization to confirm whether the obtained structures were minima
(no imaginary frequency) or transition states (only one imaginary frequency). Structure visualization
was performed using GaussView [29].

4. Conclusions

In conclusion, it should be emphasized that the described method enables the preparation,
with good to very good yields, of new mono- and diesters with imidazoquinolinone ring, starting from
2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones.

These results also increase the variety of methods for the preparation of diesters with heterocyclic
rings. All the prepared compounds have not been described previously in the literature.

The structure of monoesters is different than it results from the structure of the raw materials.
Substrates have the confirmed tautomeric structure—keto which is the most energetically stable. Enol
(thiol) form of 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones was identified in the mono-
and next in diester structure. Enolization process takes place during substitution reaction. In this way,
the most stable structure of mono- and diester are formed. It was proved and confirmed by molecular
modeling that enolization process occurs only with participation nitrogen atom number 1.
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Substitution of the second ester group takes place at nitrogen atom number 3 despite of the fact that
in the case of some used 2,3-dihydro-2-thioxo-1H-imidazo[4,5-c]quinolin-4(5H)-ones is the possibility
of reaction at nitrogen atom number 5. Nevertheless, such reaction is not energetically beneficial.

The obtained diesters have quite good thermal stability, which enables their use in the synthesis
of thermally stable polymers.

Furthermore, both the mono- and diester have potential biological activity. It will be the subject of
the next separated manuscript.

Supplementary Materials: The following are available online, Figure S1: 1H-NMR spectrum of ethyl
2-((4-oxo-4,5-dihydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)acetate (4a),Figure S2: 1H-NMR spectrum of ethyl
2-((4-oxo-5-methyl-4,5-dihydro-3H-imidazo[4,5-c]-quinolin-2-yl)thio)acetate (4b), Figure S3: 1H-NMR spectrum
of ethyl 2-((4-oxo-5-phenyl-4,5-dihydro-3H-imidazo[4,5-c]-quinolin-2-yl)thio)acetate (4c), Figure S4: 1H-NMR
spectrum of ethyl 2-((3-(2-ethoxy-2-oxoethyl)-4-oxo-4,5-dihydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)acetate
(5a), Figure S5: 1H-NMR spectrum of ethyl 2-((3-(2-ethoxy-2-oxoethyl)-4-oxo-5-methyl-4,5-di-hydro-3H-
imidazo[4,5-c]quinolin-2-yl)thio)- acetate (5b), Figure S6: 1H-NMR spectrum of ethyl 2-((3-(2-ethoxy-
2-oxoethyl)-4-oxo-5-methyl-4,5-di-hydro-3H-imidazo[4,5-c]quinolin-2-yl)thio)- acetate (5c). Table S1: Possible
conformers of compounds 4, Table S2: Possible conformers of compounds 5.
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21. Kosterna, J.; Lubczak, J.; Myśliwiec, B. Esters and urethanes with pyrimidine ring. Heterocyc. Comm. 2009,

15, 9–16. [CrossRef]
22. Zarzyka-Niemiec, I.; Lubczak, J. Polyesters with trioxoimidazolidine rings . Polimery. 2006, 50, 383–386.

[CrossRef]
23. YE, Cross-Linking Modified Polyethylene Geogrid. CN Patent 104,262,757-A, 2015.
24. Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer: Berlin, Germany, 2005.
25. Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended

Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–730.
26. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.;

Mennucci, B.; Petersson, G.A.; et al. Fox, Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
27. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set

for correlated wave functions. J. Chem. Phys. 1980, 72, 650–657. [CrossRef]
28. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density

functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[CrossRef] [PubMed]

29. Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA, 2009.

Sample Availability: Samples of the compounds. 4a, 4b, 4c, 5a, 5b, 5c, are available from the authors.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tet.2010.08.056
http://dx.doi.org/10.1002/hlca.201400189
http://dx.doi.org/10.1246/cl.140846
http://dx.doi.org/10.1063/1.1740412
http://dx.doi.org/10.1007/s10973-016-5903-y
http://dx.doi.org/10.1016/j.jct.2017.05.019
http://dx.doi.org/10.1002/1439-2054(200210)287:10&lt;665::AID-MAME665&gt;3.0.CO;2-7
http://dx.doi.org/10.1515/HC.2009.15.1.9
http://dx.doi.org/10.14314/polimery.2005.383
http://dx.doi.org/10.1063/1.438955
http://dx.doi.org/10.1063/1.3382344
http://www.ncbi.nlm.nih.gov/pubmed/20423165
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Structure Analysis 
	Molecular Modeling 
	Thermal Properties 

	Materials and Methods 
	Materials 
	Syntheses 
	Analytical Methods 

	Conclusions 
	References

