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Abstract. A significantly important part of model predictive control (MPC) with constraints is a solution 
of an optimization task. The result of the optimization is a vector of future increments of a manipulated 
variable. The first element of this vector is applied in the next sampling period of MPC in the framework of 
a receding horizon strategy. In practical realization of a multivariable MPC, the optimization is 
characterized by higher computational complexity. Therefore, reduction of the computational complexity of 
the optimization methods has been widely researched. One suitable principle of precomputing operations 
was proposed by Wang, L. This general optimization strategy is further modified in this paper. Decreasing 
of the computational complexity of the optimization by using of the proposed modification is discussed.  

1 Introduction 
Model predictive control (MPC) [1]-[2] has been widely 
applied in controlling of industrial processes thanks to its 
ability to deal with control difficulties such as 
constrained variables [3], time-delay [4], nonlinearity [5] 
and non-minimum phase [6]. Theoretical research in the 
area of predictive control has a great impact on the 
industrial world and there are many applications of 
predictive control in industry [7]-[8]. Predictive control 
is also one of the most effective approaches for control 
of multi-input multi-output (MIMO) systems [9]. An 
advantage of model predictive control is that the 
multivariable systems can be handled in a 
straightforward manner. 

A structure of a predictive controller can be divided 
into two parts: a predictor and an optimizer. The basic 
idea of MPC is to use a model of a controlled process to 
predict N future outputs of the process. A trajectory of 
future manipulated variables is given by solving an 
optimization problem incorporating a suitable cost 
function and constraints. Only the first element of the 
obtained control sequence is applied. The whole 
procedure is repeated in following sampling period. This 
principle is known as the receding horizon strategy [10]- 
[11]. One of the major advantages of predictive control 
is its ability to do on-line constraints handling in a 
systematic way. Almost all industrial applications hold 
constraints of input, output and state space variables.  

A significantly important part of the constrained 
MPC is an optimization task. A frequently used type of 
optimization in MPC is the quadratic programming [13], 
where constraints are considered. Previous, current and 
predicted control variables of MPC are included in a cost 

function [14]. In case of constrained multivariable 
predictive control, many constraints are processed in the 
optimization problem. Therefore, a selection of an 
appropriate numerical method is a necessary condition 
for successful achievement of the vector of future 
increments of the manipulated variables. 

The Hildreth method [15] has been widely used for 
purpose of solving of the quadratic programming 
problems in MPC. This approach can be categorized as a 
dual method [15], which manipulates with the 
Lagrangian multipliers [15]. Reduction of the 
computational complexity of the optimization methods 
has been widely researched. The reason is that in certain 
cases of predictive control of fast dynamics processes an 
optimization algorithm may not be feasible within the 
sampling period time. 

A general modification of the Hildreth method, 
proposed by Wang, L., was published in [15] and has 
been frequently utilized in MPC algorithms [16]. 
Reduction of a computational complexity is based on 
testing of the occurance of a multidimensional extreme, 
which is computed in the current sampling period in 
MPC under all constraints.  

In this paper, a modification of the optimization 
strategy proposed by Wang, L. [15] was further 
improved from the algoritmical point of view. As 
evaluation of all defined constraints is significantly time-
demanding in multivariable MPC, the proposed 
modification of the Wang’s approach can be 
advantageous due to significant reduction of numerical 
iterative operations required by the optimization 
algorithm. 
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2 Multivariable model predictive control 
In the multivariable model predictive control [1]-[2], a 
system with two inputs and two outputs (TITO) will be 
further considered. The TITO processes are frequently 
encountered multivariable processes in practice [9]. A 
general transfer matrix [11] of a TITO system can be 
expressed as (1), where U and Y are vectors of the 
manipulated variables and the controlled variables. 
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It may be assumed that the transfer matrix (1) can be 
transcribed to form (4) of the matrix fraction. 
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The model can be also written in form (5). 
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As an example, a model with polynomials of second 
degree was chosen in (6)-(7). The model has sixteen 
parameters. The matrices A and B are defined as follows: 
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A widely used model in model predictive control is 
the CARIMA (Controller Autoregressive Integrated 
Moving Average) model which we can obtain by adding 
a disturbance model (8), where n is a non-measurable 
random disturbance that is assumed to have zero mean 
value and constant covariance and (9) in case of TITO 
system. 
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For purposes of simplification, polynomial matrix C 
will be further supposed to be equal to the identity 
matrix [17].  

The difference equations (10) of the CARIMA model 
are used for computation of predictions in predictive 
control. These equations can be further written into a 
matrix form (11)-(12). 
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It was necessary to directly compute three steps-
ahead predictions by establishing of previous predictions 
to later predictions. The model order defines that 
computation of one step-ahead prediction is based on the 
three past values of the system output: 
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Computation of the predictions can be divided into 
recursion of the free response and recursion of the matrix 
of dynamics. The free response vector can be expressed 
as: 
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Coefficients of matrices P and Q for further 
predictions are computed recursively. Based on the three 
previous predictions it is repeatedly computed the next 
row of the matrices P and Q in the following way: 
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Recursion (19)-(20) of the matrix G is similar. The 
next element of the first column is repeatedly computed 
and the remaining columns are shifted. This procedure is 
performed repeatedly until the prediction horizon is 
achieved. If the control horizon is lower than the 
prediction horizon a number of columns in the matrix is 
reduced. Predictions can be written in a compact matrix 
form (21). 
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2.1. Implementation of MPC  

In the framework of the optimization subsystem of MPC, 
the computation of a control law of MPC is particularly 
based on minimization of quadratic criterion (22). This 
specific form of the optimization problem is then related 
to quadratic optimization [13]-[14]. 
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where e(k+j) is a vector of predicted control errors, 
Δu(k+j) is a vector of future increments of the 
manipulated variable, N is a length of the prediction 
horizon, Nu is a length of the control horizon and λ is a 
weighting factor of control increments. A predictor in a 
vector form is given by: 

0ˆ yuGy                                 (23) 

where ŷ  is a vector of system predictions along the 
horizon of the length N, Δu is a vector of control 
increments, y0 is the free response vector. G is a matrix 
of the dynamics given by equation (24).    
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where sub-matrices Gi have dimension 2x2 and 
contain values of the step sequence. 

The criterion (22) of the optimization problem can be 
written in a general vector form (25). 
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where w is a vector of the reference trajectory. The 
criterion can be modified using the expression (25) to 
(26).   
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where the gradient g and the Hess matrix H are 
defined by following expressions: 
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In context of the quadratic programming 
optimization with constraints, general formulation of 
predictive control is as follows 
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with respect to matrix inequality in a compact form: 
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2.2 Optimization algorithm widely used in MPC  

In practical applications of MPC, a modification 
proposed by Wang, L. has been widely implemented 
[15]. This advantageous approach represents a new 
insight to the optimization strategy used in MPC. MPC is 
characteristic by a frequent occurance of a situation, 
when the quadratic programming problem can be 
completely substituted by a simple multi-dimensional 
extrem problem.  

The main idea of the modification is based on a pre-
computed vector of future increments of the manipulated 
variables in form of a multi-dimensional extrem (31). If 
the inequality (30) is fulfilled then the whole problem of 
quadratic programming is eliminated and the solution 
has form (31). 
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     bHΔu 1                                (31) 

If the multi-dimensional extreme is achieved, then 
the computational complexity significantly decreases. 
Otherwise the quadratic programming problem has to be 
solved using the Hildreth method, which results in 
equation (32). 

                       )( TbdMHΔu  T-1-   (32) 

3 Proposal of optimization strategy 
For purposes of further decreasing of computational 
complexity of the optimization algorithm, the approach 
described in the previous section was further improved. 
The approach presented by Wang. L [15] spends a large 
amount of the computational time by evaluation of all 
conditions in (33). 
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The condition (33) can be effectively modified while 
maintaining the original advantages of the modification 
presented by Wang. L. A new form of the conditions is 
defined by (34). The testing of the conditions is 
progresivelly divided into partial operations. 
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In case of the first failure the testing is terminated 
and the rest of the conditions is not evaluated. The 
quadratic programming problem then must be solved. 
This enables saving of the computational time. This is 
significant particularly in case of multivariable MPC 
where the number of operations is large. If all the 
conditions are fulfilled and the testing is completed, then 
the multidimensional extreme problem without 
constraints is solved. 

4 Simulation results 
The modification published by Wang, L. was compared 
with the method proposed in this paper by simulation of 
constrained multivariable predictive control in 
MATLAB. The comparison was based on a 
measurement of floating point operations [18] of a whole 
MPC algorithm which was applied for simulation control 
of a simulation controlled system defined by (35)-(36). 

A setting of further parameters of control is defined by 
(37). 



















2121

2121
1

 0.134 1.0911-1 0.0759 0.0711-
 0.0029 0.024 0.3271 1.3264-1)(

zzzz
zzzzzA

 (35) 



















2121

2121
1

 0.1065 0.1779 0.0688 0.1755
 0.0682 0.093 0.097- 0.2983)(
zzzz
zzzzzB   

(36)  

min max max1.7,  1.75,  0.07u u u                     (37) 

Constraints of the manipulated variables and 
increments of the manipulated variables were considered 
which is obvious from definition (37). Setting of 
constraints has an appropriate form, as can be seen in 
(38). Where I is an identity matrix [17] and E is a unit 
matrix [17]. 
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(38) 

As can be seen in Table 1, a significantly lower 
number of floating point operations [18] was achieved 
when using the proposed approach. The complexity 
variable  equal to a maximum horizon N was 
incrementaly increasing. 

Table 1. Decreasing of number of operations using proposed 
approach. 

  MPC without Proposal Proposed Approach 
µ F [flops] F*[flops] 

5 46115895 46101100 
10 356752161 356697015 
15 1311763707 1311643086 
20 3952627076 3952398870 
25 8412199693 8411825659 
30 15642495861 15641915446 
35 25789861477 25789050231 

An order of the computational complexity can be 
expressed by using a function O=O() [18]. F* is the 
number of flops and O* expresses the order of the 
complexity function for the proposed approach.  F and O 
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are the number of flops and the expression of complexity 
function for the method proposed by Wang, L. In 
equations (39) and (40), the results were obtained using a 
non-linear regression [19]. 
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Simulation results can be seen in Fig.1 and Fig.2. 
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Fig. 1. Simulation of MPC - 1st variables of control. 
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Fig. 2. Simulation of MPC - 2nd variables of control. 

5 Conclusions 
The widely used modification of the optimization 
strategy in MPC, published by Wang, L., was further 
modified and improved in this paper. Advantages of the 
proposed modification were demonstrated and proved by 
simulations in MATLAB. The proposed approach was 
successfully implemented for the multivariable 
constrained MPC. Multivariability and considered 
constraints in MPC significantly increase a 
computational complexity of the optimization. 
Therefore, the proposed approach can be advantageous 
for multivariable MPC with constraints. 
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