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Abstract 1 

Reduced graphene oxide (RGO) hydrogel films possess a low specific capacitance and have 2 

no flexible current collectors, which limit their use in flexible supercapacitors. To solve these 3 

problems, a novel polyaniline (PANI) modified RGO hydrogel film with an attached graphite 4 

current collector (PANI/RGO/G) was prepared. Based on this film, a flexible supercapacitor 5 

device was fabricated and characterized. PANI/RGO/G film demonstrates good flexibility and 6 

electron transport. The graphite current collector highly reduces the internal resistance of the 7 

device. It shows a high specific capacitance of 478 F g1 at a current density of 2 mA cm2 based 8 

on the mass of one electrode and a good cycling stability (86.5% retention after 5000 cycles). 9 

Moreover, during the fabrication of the device, a modified design was adopted to solve the 10 

problem of low extension of PANI/RGO/G hydrogel film. The obtained device also exhibits a 11 

good flexibility; its capacitance hardly changes after 500 cycles of bending at an angle of 90 o. 12 

Keywords: Flexible supercapacitor; Reduced graphene oxide; Graphite current collector; 13 

Polyaniline; Hydrogel film  14 
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 16 

1. Introduction 17 

The rapid development of flexible electronics highly demands novel energy storage devices, 18 

which are light-weight, thin and flexible, apart from meeting required electrochemical 19 

performance [1, 2]. Flexible supercapacitors have attracted significant attention due to their 20 

safety and simple structure, as well as their intrinsic properties such as high power density, fast 21 

chargedischarge rates, and long cycle life, which make them one of the most promising 22 

candidates for flexible energy storage devices [3]. 23 

Flexible electrodes are one of the most important components in flexible supercapacitors. 24 

RGO have been extensively studied as electrode material of flexible electrodes due to their two-25 

dimensional structure, high specific surface area, and excellent flexibility, as well as their easy 26 

access, partial functionalization and low cost, compared to graphene [69]. Self-supported RGO 27 

films with robust mechanical strength can be prepared by various methods [1012]. However, 28 

during the preparation, especially during the drying, the aggregation and restacking of individual 29 

graphene nanosheets reduce their specific surface area and re-wettability to electrolytes, resulting 30 

in blocking the diffusion of ions and decreasing the electrochemical performance [1317]. Thus, 31 

RGO hydrogel films have recently drawn attentions as their highly porous structure can store 32 

abundant amount of electrolyte and provide continuous pathway for electrolyte ions [1821]. 33 

However, due to the limited contribution of electrochemical double layer to capacitance, the 34 

capacitance of RGO hydrogel film is still lower compared to those of pseudocapacitors that 35 

involve Faradaic reactions for storing the charge [22]. Therefore, pseudocapacitive materials 36 

such as transition metal oxides and conducting polymers are generally employed [2325].  37 
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Among them, polyaniline (PANI) has been extensively used due to its ease of synthesis, low 38 

cost, environmental friendliness and potentially large pseudocapacitance [26]. Tremendous 39 

efforts have been made to introduce PANI into RGO with various forms such as particles 40 

[2729], films [3032] and foams [3335]. However, the raw RGO or the archived RGO 41 

composites have dry states. Recently, several studies have been reported on the incorporation of 42 

PANI into wet-state and bulk RGO hydrogel films, showing inspiring results [23, 36-38].  43 

On the other hand, although residual hydrophilic groups on RGO increase the accessibility 44 

of aniline during the polymerization, they degrade the electrical conductivity of RGO [3941]. 45 

Consequently, the electron transport in RGO films cannot meet the demand of supercapacitor 46 

devices with large scales and high working currents. Therefore, current collectors are still 47 

necessary to RGO based supercapacitor devices. However, there are limited choices of flexible 48 

current collectors for aqueous electrolytes because of the corrosion of major metals [4245]. 49 

Therefore, gold foils or gold coated plastic substrates often appear in flexible devices [4648]. 50 

Besides the cost, the peeling of electrode films from current collectors during bending has been 51 

considered as a critical issue [49, 50]. One of the strategies is direct deposition of current 52 

collector on the surface of RGO films. Another problem with RGO hydrogel films is their weak 53 

mechanical properties such as low stretchability [23, 51]. Thus, there is a high risk of fracturing 54 

during bending when it is fixed on a flexible substrate [52].  55 

In this paper, we report a flexible supercapacitor device based on PANI/RGO/G hydrogel 56 

film. A graphite current collector was directly deposited on the surface of RGO hydrogel film 57 

modified by PANI through a diluted in-situ polymerization. During the fabrication of the 58 

supercapacitor device, a special structural design of device was adopted to solve the problem of 59 

weak mechanical properties of RGO hydrogel based films. As a result, high electrochemical 60 
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performance of the device has been achieved due to (i) the high diffusion of electrolyte ions in 61 

hydrogel films, (ii) the contribution of high pseudocapacitance of PANI, and (iii) the enhanced 62 

electron transport endowed by a graphite current collector. Moreover, owing to the special 63 

design, this device exhibits a high flexibility. This study shows a promising possibility for the 64 

application of RGO hydrogel based films in flexible supercapacitors. 65 

2. Experimental 66 

2.1. Preparation of RGO/G and PANI/RGO/G hydrogel films 67 

Graphite oxide was prepared by the oxidation of natural graphite flakes (325 mesh, Graphite 68 

Tyn, Czech Republic) according to a modified Hummers’ method [53]. The exfoliation of 69 

graphite oxide to graphene oxide (GO) was achieved by ultra-sonication of the dispersion of 70 

graphite oxide [54]. RGO colloid suspension was obtained by reducing GO dispersion with 71 

electrostatic stabilization [11]. A typical procedure was as follows: 6 mL of 3 mg/mL GO 72 

dispersion, 1 mL of ammonium hydroxide solution (30 32 wt. %) and 100 μL of hydrazine 73 

hydrate (50 60 wt. %) were added in a flask filled with 200 mL of deionized water. This 74 

mixture was then severely shaken. RGO colloid was obtained by placing this flask in a water 75 

bath with temperature of 90 oC for 2 h. RGO hydrogel film was prepared by the vacuum 76 

filtration of this obtained RGO colloid. To obtain a graphite current collector on RGO/G 77 

hydrogel film, at the end of the filtration, the top of hydrogel film was rinsed by dilute 78 

ammoniawater solution, and then 2 mL of 1 mg/mL graphite suspension was added into for the 79 

successive filtration.  80 

PANI/RGO/G hydrogel films were obtained by the in-situ polymerization of aniline onto an 81 

RGO/G film. A typical procedure was as follows: RGO/G filter cakes were cut into rectangular 82 
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pieces with a size of 1 cm × 2 cm. Two pieces of these films were immersed into 10 mL of  1 M 83 

HCl aqueous solution containing 90 μL of aniline monomer. The mixture was stored at 0 oC for 2 84 

h. 10 mL of 1 M HCl aqueous solution containing 0.155 g ammonium persulfate (pre-cooled to 0 85 

oC) was then poured into the above mixture. This mixture was left at 0 oC for another 24 h. The 86 

resulting films were immersed in HCl aqueous solution, ethanol, and deionized water 87 

subsequently. Finally, the films were compressed between two pieces of polyvinylidene fluoride 88 

(PVDF) filter membranes under 10 MPa. The schematic illustration of PANI/RGO/G hydrogel 89 

film formation is given in Figure 1. 90 

2.2. Bending ability test of prepared hydrogel films on a PET substrate. 91 

The test fixture is as follows: a hydrogel film (1 cm×3 cm) was compressed on a slide of 92 

polyethylene terephthalate (PET) substrate under 10 MPa. The thickness of PET was ~100 μm. 93 

Two titanium foils were placed on each end of the film; each covers an area of 0.5 cm × 1 cm. 94 

Then a piece of poly(dimethyl siloxane) (PDMS, with thickness of ~0.7 mm) was covered on the 95 

top. Two titanium foils were carefully fixed by clips for testing the resistances. Thus, the area of 96 

exposed hydrogel film was 1 cm × 2 cm. The applied bending angles were 90 o, 120 o and 180 o. 97 

The number of bending was up to 600 with a range of bending angles of ± 90 o.  The resistance 98 

was measured only when the film returned back to the initial state by a Keithley 6517A Digital 99 

Source Meter. 100 

2.3. Fabrication of flexible supercapacitor devices 101 

The packing substrate (PDMS) of the device was prepared from SYLGARD® 184 (Dow 102 

Corning Corporation). It represents a slide (thickness = 0.2 cm) with a cavity (2.5 cm long, 1.3 103 

cm wide, 0.15 cm deep). Two prepared PANI/RGO/G films were put into the cavity, separated 104 

and surrounded by poly(vinyl alcohol)-H2SO4 (PVA-H2SO4) gel electrolyte (10 g PVA (Mw, ~ 105 
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145,000) dissolved in 90 g 1 M H2SO4 solution). Two titanium foils were placed on each edge of 106 

the films with an area of 1 cm × 0.5 cm. This part of the films was pre-dried on a hot plate for 107 

seconds at a temperature of about 80 oC and separated by Parafilm. The effective electrode area 108 

was 1 cm × 1.5 cm. Then a PET substrate was put on the top for sealing. Finally, the titanium 109 

foils were fixed by a clip.  110 

2.4. Characterization 111 

The morphology of the prepared hydrogel films were investigated by scanning electron 112 

microscopy (SEM, FEI Nova NanoSEM450). The electrochemical characterization was carried 113 

out by cyclic voltammetry (CV), galvanostatic chargedischarge test and electrochemical 114 

impedance spectroscopy (EIS) using Autolab PGSTAT128N (Metrohm, Netherlands). The 115 

electrochemical performance of the prepared hydrogel films was first investigated in a three-116 

electrode system with an Ag/AgCl reference electrode and a Platinum counter electrode in 1M 117 

H2SO4. The measurement for assembled devices was carried out in a two-electrode system. The 118 

capacitance of each device was calculated from the galvanostatic curves at different current 119 

densities using Eq. (1), where i is the discharge current and dV/dt stands for the slope of the 120 

discharge curve.  121 

                                                  Cdevice = i/(-dV/dt)                                                                (1) 122 

The gravimetric capacitance of each device (Ct) was calculated by Eq. (2), and the specific 123 

capacitance of a single electrode (Cs) was calculated by Eq. (3), where m is the total mass of two 124 

electrodes.  125 

                                                Ct = Cdevcie/m                                                                         (2) 126 

                                                      Cs = 4Ct                                                                           (3) 127 
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The areal capacitance of each device (CA) was calculated by Eq. (4), where A is the 128 

footprint area of two electrodes. 129 

                                                  CA = Cdevice/A                                                                       (4) 130 

The areal energy density (EA) and power density (PA) of devices was derived from Eqs. (5) 131 

and (6), where ΔV represents the potential window excluding the IRdrop, which is the potential 132 

drop at the beginning of the discharge in the chargedischarge profile.  133 

                                                   EA = 1000CA ΔV 2/7200                                                     (5) 134 

                                                  PA = EA/t                                                                             (6) 135 

                             136 

3. Results and Discussion 137 

In order to increase the electron transport in RGO hydrogel film, graphite flakes were 138 

deposited on one side of RGO hydrogel, serving as a current collector, after the successive 139 

filtration of RGO dispersion and graphite flakes suspension, as illustrated in Figure 1. 140 

Approximately 28 wt. % of graphite flakes are bonded to the surface of RGO/G and remain there 141 

during the preparation of PANI/RGO/G. This is because some graphite flakes are inserted into 142 

the gap of RGO nanosheets, which is visible in SEM images (see Figure 2). After compressing 143 

the RGO/G and PANI/RGO/G hydrogel films, graphite flakes are strongly attached to the RGO 144 

matrix, thus rendering the flexibility and improving the mechanical properties of the films. The 145 

final thickness of RGO/G film was about 80 μm with a mass loading of ~0.9 mg cm2, where the 146 

mass loading of RGO is about 0.65 mg cm2. Figure 1 displays a digital image of a compressed 147 

RGO/G filter cake from both sides of graphite current collector and RGO hydrogel. This RGO/G 148 

exhibits a high flexibility, as shown in the inset image. A prepared flexible PANI/RGO/G 149 
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hydrogel film is also presented in Figure 1; it has a size of 1 cm × 2 cm, a thickness of ~115 μm 150 

and a mass loading of 1.7 mg cm2. The mass loading of PANI/RGO without graphite current 151 

collector is about 1.47 mg cm2.  152 

The morphology of various prepared hydrogel films is shown in Figure 2. RGO film 153 

exhibits a porous structure, which provides continuous ionic pathways across the piled RGO 154 

layers (Figure 2a). Importantly, RGO flakes stand on the surface, as can be seen from the side 155 

perspective of the sample (Figure 2b). That is why graphite flakes can be embedded into the 156 

RGO film during the filtration and then held tightly after the compression. The high 157 

magnification image of RGO/G surface inserted in Figure 2c obviously shows that small hard 158 

graphite flakes are embraced by soft RGO sheets. This makes this graphite current collector 159 

deformable along with the RGO film without splitting during bending. This deposition method 160 

seems to be a low-cost and efficient strategy to create a flexible current collector on RGO 161 

hydrogel film.  162 

The surface and cross-sectional morphology of PANI/RGO film before the compression is 163 

demonstrated in Figures 2d, e, f (surface) and Figures 2g, h, i (cross-section), respectively. As 164 

can be seen, the surface of PANI/RGO film (Figure 2d) becomes more uniformly porous than 165 

that of RGO (Figure 2a) due to the PANI deposition, which decreases the restacking of RGO 166 

nanosheets during freeze-drying. Figures 2e and 2f are the highly magnified images of 167 

PANI/RGO film, which show that PANI nanoarrays grow on the surface of RGO nanosheets. 168 

Figures 2g, h and i demonstrate the cross-section of the PANI/RGO film from low to high 169 

magnification. This film has a thickness of about 450 μm (Figure 2g). The highly magnified 170 

image (Figure 2h) demonstrates a layer-by-layer structure with a highly developed porous 171 

structure. Figure 2i confirms that PANI nanoarrays are present not only on the surface but also 172 
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inside the hydrogel. This fine growth of PANI nanoarrays and their uniform distribution benefit 173 

from the interconnected channels within hydrogel, which enables the diffusion of aniline, as well 174 

as from the low concentration of aniline in the reaction media, which guarantees a well-175 

controlled nucleation-growth of PANI. A thin PANI nanoarray layer (59 wt. % in PANI/RGO) 176 

deposited on RGO tends to endow the electrode with excellent electrochemical performance [31]. 177 

RGO/G and PANI/RGO/G films were first analyzed by CV measurements in a three-178 

electrode system in 1 M H2SO4 with a potential window from 0.2 to 0.8 V versus Ag/AgCl. The 179 

CV curves in Figure 3 show a remarkable difference between the electrochemical activities of 180 

RGO/G and PANI/RGO/G. RGO/G shows only one pair of redox peaks due to the transition 181 

between quinone/hydroquione groups in RGO (see Figure 3a), which is typical for carbon 182 

materials [55, 56]. However, two pairs of redox peaks (C1/A1, C2/A2) from PANI/RGO/G 183 

indicate the presence of pseudocapacitive PANI (Figure 3b). Redox transitions between a 184 

semiconducting state (leucoemeraldine form) and a conducting state (emeraldine form) are 185 

responsible for the peaks C1/A1, and the Faradaic transformation of emeraldine to pernigraniline, 186 

for the redox peaks C2/A2 [57]. The presence of PANI substantially enhances the specific 187 

capacitance of RGO/G hydrogel film. As a result, PANI/RGO/G exhibits a higher specific 188 

capacitance of 806 mF cm2 (548 F g1 excluding the mass of graphite current collector), 189 

compared to that of RGO/G (142 mF cm2, and 218 F g1 excluding the mass of graphite current 190 

collector)  at a scan rate of 5 mV s1 based on the three-electrode system. 191 

However, during the fabrication of the flexible supercapacitor devices, it was found that the 192 

prepared hydrogel films exhibit weak mechanical properties when fixed on a flexible PET 193 

substrate. The bending fixture and bending test results are demonstrated in Figure 4. As can been 194 

seen, the employed graphite current collector rarely decreases the bending ability of the films, 195 
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but the deposition of PANI does (Figure 4b). More importantly, the damage of each film 196 

deteriorates as the angle and the number of bending increase (Figure 4c). The structural design 197 

plays an important role in the flexibility of devices. Several strategies have been reported, such 198 

as using the planar configuration, reducing the thickness and optimizing the mechanical neutral 199 

plane [5860]. Here we demonstrate an alternative approach to solve the problem of weak 200 

mechanical properties of RGO/G and PANI/RGO/G hydrogel films. The schematic diagram of 201 

supercapacitor fabrication is shown in Figure 5. As can been seen, when PANI/RGO/G film is 202 

fixed on a PET substrate, the top and the bottom of the film have the same length. After getting 203 

bent, the lengths are getting different upon the radius from the center of concentric circles shown 204 

in Figure 5a. Thus, the top of PANI/RGO/G is stretched, and stresses are generated both within 205 

and between the PANI/RGO/G and PET substrate [61]. Since PANI/RGO/G hydrogel has low 206 

tensibility, it tends to be torn up. Taking into account that there is no strong interaction between 207 

PANI/RGO/G and PET, PANI/RGO/G can be exfoliated from the PET substrate during the 208 

bending. Thus, a free-movement configuration was adopted for the obtained hydrogel films as 209 

shown in Figure 5b. PANI/RGO/G and PET substrate are separated by gel electrolyte, and only 210 

one side of PANI/RGO/G is provided with current collector (titanium foils). As a result, 211 

PANI/RGO/G is suspended in gel electrolyte. When it bends, due to the large deformation and 212 

creep of PVA-H2SO4 gel electrolyte, PANI/RGO/G can freely move, thus the stress applied to 213 

PANI/RGO/G from the gel electrolyte is much lower than that from the PET substrate. This free-214 

movement configuration has been adopted to assemble the flexible supercapacitor device (Figure 215 

5c).  216 

The electrochemical performance of assembled flexible supercapacitor devices with various 217 

hydrogel films is shown in Figure 6. The effect of graphite current collector on electrochemical 218 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

12 

performance of these devices was studied. Figures 6a and 6b show the galvanostatic discharge 219 

profiles of PANI/RGO and PANI/RGO/G at various current densities of 1, 2, 5 and 10 mA cm2, 220 

respectively. Each IRdrop of PANI/RGO/G is extremely lower than that of PANI/RGO at the 221 

corresponding current density. The IRdrop vs current densities are summarized in the inset graph 222 

in Figure 6d. The slope of IRdrop vs current density is related to the Internal Resistance (R= 223 

IRdrop/i) of the device, which determines its maximum voltage during discharge and, 224 

consequently, the maximum power [62]. Because of the contribution from pseudocapacitive 225 

PANI, PANI/RGO/G exhibits a much higher specific gravimetric capacitance (Cs) of 409 F g1 226 

(478 F g1, excluding the mass of graphite current collector), compared to that of RGO/G (110 F 227 

g1 including, and 152 F g1 excluding the weight of graphite current collector, respectively), and 228 

similar to that of PANI/RGO (457 F g1) at a current density of 2 mA cm2. The PANI/RGO/G 229 

device yields a gravimetric capacitance (Ct) of 120 F g1 based on the total mass of two 230 

electrodes, and an areal specific capacitance of 352 mF cm2, which is much higher than that of 231 

RGO/G (49 mF cm-2) at a current density of 2 mA cm2. The PANI/RGO/G device displays good 232 

rate performance with only 11.9 % capacitance loss when current density increases from 1 mA 233 

cm2 to 10 mA cm2. As shown in Figures 6c and 6d, the CV profile of dry PANI/RGO/G is 234 

distorted and turns to be spindle-like as the scan rate increases (from 5 to 100 mV s1), while that 235 

of PANI/RGO/G hydrogel film exhibits much better retention. This is attributed to the high ion 236 

transport in PANI/RGO/G hydrogel film. This is confirmed by the impedance curves of the 237 

assembled devices with various films in Figure 6e. The charge transfer resistance (Rct) of 238 

PANI/RGO/G, extracted from the intercept of the low-frequency impedance spectrum with the 239 

real axis, is 3.5 Ω, which is almost the same as that of RGO/G but much lower than those of 240 

PANI/RGO and dry PANI/RGO/G. This indicates that the graphite current collector reduces the 241 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

13 

resistance of the films and that the interconnected porous structure of hydrogel films ensures fast 242 

ion diffusion. It is known that the enhanced ion and electron transport within PANI/RGO/G can 243 

endow its assembled device with high electrochemical performance [63]. Indeed, the fabricated 244 

device demonstrates a higher energy density of 27.8 μWh cm2 (8.1 Wh kg1, at a current density 245 

of 2 mA cm2) and a larger power density of 3.5 mW cm2 (1.0 kW kg1, at a current density of 246 

10 mA cm2) compared to those of PANI/RGO (20.8 μWh cm2 (6.5 Wh kg1) and 2.0 mW cm2 247 

(0.6 kW kg1) at the corresponding current density, respectively (inset image in Figure 6f). 248 

Furthermore, this device exhibits a good cycling stability (Figure 6f), unlike general PANI-based 249 

supercapacitors, which suffer from limited cycling life due to the swelling and shrinking of 250 

PANI during the chargedischarge process. Indeed, the cycling performance shows capacitance 251 

retention as high as ~86.5% over 5000 cycles at a high current density of 5 mA cm2, which is 252 

attributed to the “soft” and self-adaptive nature of RGO hydrogels, as well as to the strong 253 

adhesion of PANI on RGO nanosheets through π-π interaction [23, 36].  254 

The flexibility of the fabricated device and its influence on the electrochemical performance 255 

were further investigated. Figure 7a shows the CV curves of PANI/RGO/G device at different 256 

bending angles at a scan rate of 10 mV s1. When the bending angle is from 90 o to 180 o, only a 257 

slight change can be observed. The capacitance retentions of the device after different numbers 258 

of bending are presented in Figure 7b. When the bending angle keeps at 90 o, the device has 259 

almost the same capacitance as the initial one even after 500 times of bending. When the bending 260 

angle is increased up to 120 o, the capacitance retention can be as high as above ~95 %. The 261 

obtained results confirm that the improved flexibility has been achieved by using the free-262 

movement configuration. The inset digital image in Figure 7b shows that when the bending angle 263 

turns from 0 o to 120 o, the gel electrolyte is sheared by two parallel films on each side. The films 264 
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keep their initial length, the elongation occurring in the gel electrolyte. Due to the high 265 

deformation and creep of the gel electrolyte, a slight shear force is applied to the hydrogel films.  266 

Because of the narrow potential window of aqueous electrolyte and PANI, this device can 267 

be charged only to 0.8 V, which is not sufficient for the most practical applications. To obtain 268 

higher desired voltages, several devices can be connected in series. Figure 8 shows the 269 

chargedischarge performance of a packed cell with three devices connected in series. As can be 270 

seen, this cell can be charged up to 2.4 V and demonstrates almost the same chargedischarge 271 

time as a single device at a current density of 1 mA cm2. This cell can light a light-emitting 272 

diode (LED) lamp with a forward voltage of 1.8 V, as seen in the inset photograph. 273 

4. Conclusions 274 

In this work, we have demonstrated a flexible supercapacitor device with high 275 

electrochemical performance and improved flexibility by using PANI/RGO/G hydrogel films 276 

and a free-movement configuration. The modification of RGO/G hydrogel film by PANI results 277 

in an enhanced areal capacitance of 352 mF cm-2 (478 F g1)  and energy density of 27.8 μWh 278 

cm2 (8.1 Wh kg1) compared to those of RGO/G (49 mF cm-2, 152 F g1) at a current density of 279 

2 mA cm2. Moreover, a low-cost but efficient method was adopted to create a flexible current 280 

collector on RGO hydrogel film using graphite flakes. This graphite current collector reduces the 281 

internal resistance of the device (Rct = 3.5 ), which manifests itself in an enhanced power 282 

density up to 3.5 mW cm2 (1.0 kW kg1) at a current density of 10 mA cm2. Moreover, this 283 

device also exhibits a good cycling stability (86.5% retention after 5000 cycles) at a high current 284 

density of 5 mA cm2, as well as an improved flexibility, where its capacitance hardly changes 285 

after 500 cycles of bending at a bending angle of 90 o. Due to the free-movement configuration, 286 
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PANI/RGO/G is suspended in gel electrolyte. The large deformation and creep of PVA-H2SO4 287 

gel electrolyte deceases the applied stress from the PET substrate to PANI/RGO/G. This study 288 

shows a new approach to the application of mechanically weak film electrodes, especially RGO 289 

hydrogel based films, in flexible supercapacitors.  290 

 291 

Acknowledgment 292 

This work was mainly supported by the Ministry of Education, Youth, and Sports of the 293 

Czech Republic (project no. LTACH17015), NPU Program I (LO1504) and Operational 294 

Program Research and Development for Innovations co-funded by the European Regional 295 

Development Fund (ERDF) and national budget of the Czech Republic, within the framework of 296 

the CPS – strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). First author is 297 

thankful for Internal Grant Agency (IGA/CPS/2015/008 and IGA/CPS/2016/003) for the 298 

financial support received from Tomas Bata University in Zlin, Czech Republic. Authors are also 299 

thankful for the partial support of Shanghai Municipality Research Project (15520720500).  300 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

16 

References 

[1] H. Nishide, K. Oyaizu, Toward flexible batteries. Science 319, 737-738 (2008) 

[2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845-854 

(2008) 

[3] W. K. Chee, H. N. Lim, Z. Zainal, N. M. Huang, I. Harrison, Y. Andou, Flexible graphene-

based supercapacitors: a review. J. Phys. Chem. C 120, 4153-4172 (2016) 

[4] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. 

Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Carbon-based 

supercapacitors produced by activation of graphene. Science  332 (6037), 1537-1541 (2011) 

[5] Y. Shao, H. Wang, Q. Zhang, Y. Li, High-performance flexible asymmetric supercapacitors 

based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes. J. 

Mater. Chem. C 2013, 1 (6), 1245-1251 

[6] X. Huang, Z. Zeng, Z. Fan, J. Liu, H. Zhang, Graphene-based electrodes. Adv. Mater. 24, 

5979-6004 (2012) 

[7] F. Akbar, M. Kolahdouz, S. Larimian, B. Radfar, H. H. Radamson, Graphene synthesis, 

characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J. 

Mater. Sci. Mater. Electron.  2015, 26 (7), 4347-4379. 

[8] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: 

versatile building blocks for carbon-based materials. Small 6, 711-723 (2010) 

[9] M. Wang, L.D. Duong, N.T Mai, S. Kim, Y. Kim, H. Seo, Y.C. Kim, W. Jang, Y. Lee, J. 

Suhr, J.D. Nam, Large-area, conductive and flexible reduced graphene oxide (RGO) membrane 

fabricated by electrophoretic deposition (EPD). ACS Appl. Mater. Interfaces 7, 1348-1354 

(2015) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

17 

[10] F. Gunes, H.J. Shin, C. Biswas, G.H. Han, E.S. Kim, S.J. Chae, J.Y. Choi, Y.H. Lee, Layer-

by-layer doping of few-layer graphene film. ACS Nano 4, 4595-4600 (2010) 

[11] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of 

graphene nanosheets. Nat. Nanotechnol. 3, 101-105 (2008) 

[12] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. 

Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457-

460 (2007) 

[13] G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared 

graphene-paper electrodes for high-performance electrochemical supercapacitors. Small 8, 452-

459 (2012) 

[14] Z. Lei, N. Christov, X.S. Zhao, Intercalation of mesoporous carbon spheres between 

reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy 

Environ. Sci. 4, 1866-1873 (2011) 

[15] B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated ion transport in all-

solid-state flexible supercapacitors. ACS Nano 5, 7205-7213 (2011) 

[16] H. Fei, C. Yang, H. Bao, G. Wang, Flexible all-solid-state supercapacitors based on 

graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 

porous gel electrolytes. J. Power Sources 266, 488-495 (2014) 

[17] Y. Shao, M. F. El-Kady, C.-W. Lin, G. Zhu, K. L. Marsh, J. Y. Hwang, Q. Zhang, Y. Li, H. 

Wang, R. B. Kaner, 3D freeze-casting of cellular graphene films for ultrahigh-power-density 

supercapacitors. Adv. Mater. 2016, 28 (31), 6719-6726. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

18 

[18] X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in 

multilayered graphene films: towards the next generation of high-performance supercapacitors. 

Adv. Mater. 23, 2833-2838 (2011). 

[19] Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors 

based on three-dimensional graphene hydrogel films. ACS Nano 7, 4042-4049 (2013) 

[20] U.N. Maiti, J. Lim, K.E. Lee, W.J. Lee, S.O. Kim, Three-dimensional shape engineered, 

interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. 

Mater. 26, 615–619 (2014) 

[21] X. Feng, W. Chen, L. Yan, Reduced graphene oxide hydrogel film with a continuous ion 

transport network for supercapacitors. Nanoscale 7, 3712-3718 (2015) 

[22] S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Mechanisms of energy 

storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. 

Phys. Chem. C 115 (35), 17606-17611 (2011). 

[23] Y. Wang, X. Yang, L. Qiu, D. Li, Revisiting the capacitance of polyaniline by using 

graphene hydrogel films as a substrate: the importance of nano-architecturing. Energy Environ. 

Sci. 6, 477-481 (2013) 

[24] L. Benhaddad, J. Gamby, L. Makhloufi, A. Pailleret, F. Pillier and H. Takenouti, 

Improvement of capacitive performances of symmetric carbon/carbon supercapacitors by 

addition of nanostructured polypyrrole powder. J. Power Sources  307, 297-307 (2016) 

[25] J. Ge, H.B. Yao, W. Hu, X.F. Yu, Y.X. Yan, L.B. Mao, H.H. Li, S.S. Li, S.H. Yu, Facile dip 

coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor 

electrodes. Nano Energy 2, 505-513 (2013) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

19 

[26] M. Moussa, M.F. El-Kady, Z. Zhao, P. Majewski and J. Ma, Recent progress and 

performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. 

Nanotechnology 27(44), 442001 (2016) 

[27] N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, Polyaniline-grafted 

reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6, 1715-1723 

(2012) 

[28] H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, A nanostructured graphene/polyaniline hybrid 

material for supercapacitors. Nanoscale 2, 2164-2170 (2010) 

[29] J. Luo, Q. Ma, H. Gu, Y. Zheng, X. Liu, Three-dimensional graphene-polyaniline hybrid 

hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim. Acta 

173, 184-192 (2015) 

[30] D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. 

Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic 

electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745-1752 (2009) 

[31] H.P. Cong, X.C. Ren, P.W. S.H. Yu, Flexible graphene–polyaniline composite paper for 

high-performance supercapacitor. Energy Environ. Sci. 6 1185-1191 (2013) 

[32] D. Xu, Q. Xu, K. Wang, J. Chen, Z. Chen, Fabrication of free-standing hierarchical carbon 

nanofiber/graphene oxide/polyaniline films for supercapacitors. ACS Appl. Mater. Interfaces 6, 

200-209 (2014) 

[33] Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite 

film with superior rate performance for flexible supercapacitors. Adv. Mater. 25, 6985–6990 

(2013) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

20 

[34] P. Yu, X. Zhao, Z. Huang, Y. Lia, Q. Zhang, Free-standing three-dimensional graphene and 

polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight 

supercapacitors. J. Mater. Chem. A 2, 14413-14420 (2014) 

[35] F. Yang, M. Xua, S.J. Bao, H. Wei, H. Chai, Self-assembled hierarchical 

graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage.  

Electrochim. Acta 137, 381-387 (2014) 

[36] P. Du, H.C. Liu, Chao Yi, K. Wang, X. Gong, Polyaniline-modified oriented graphene 

hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl. 

Mater. Interfaces 7, 23932-23940 (2015) 

[37] N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, 

Z.J. Xu, Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an 

excellent structure for high-performance flexible solid-state supercapacitors. Sci. Rep. 6, 19777 

(2016) 

[38] J. Luo, W. Zhong, Y Zou, C. Xiong, W Yang, Preparation of morphology-controllable 

polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor 

electrodes. J. Power Sources 319, 73-81 (2016) 

[39] L. Dai, Functionalization of graphene for efficient energy conversion and storage. Acc. 

Chem. Res. 46, 31-42. (2012) 

[40] S. Eigler, C. Dotzer, A. Hirsch, M. Enzelberger, P. Muller, Formation and decomposition of 

CO2 intercalated graphene oxide. Chem. Mater. 24, 1276-1282 (2012) 

[41] S. Pei, H. Cheng, The reduction of graphene oxide. Carbon 50, 3210-3228 (2012) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

21 

[42] P. Ratajczak, K. Jurewicz, P. Skowron, Q. Abbas, F. Beguin, Effect of accelerated ageing 

on the performance of high voltage carbon/carbon electrochemical capacitors in salt aqueous 

electrolyte. Electrochim. Acta 130, 344-350 (2014) 

[43] H. Habazaki, T. Kimura, Y. Aoki, E. Tsuji, T. Yano, K. Shimizu, A.W. Hassele, 

Characterization of corrosion-resistant, nanometer-thick, layer-by-layer aluminosilicate coatings 

prepared on stainless steel. Electrochim. Acta 201, 311-319 (2016) 

[44] S. Byun, J. Yu, Direct formation of a current collector layer on a partially reduced graphite 

oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor 

electrodes. J. Power Sources 307, 849-855 (2016) 

[45] J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, Metallic fabrics as the current 

collector for high-performance graphene-based flexible solid-state supercapacitor. ACS Appl. 

Mater. Interfaces 8, 4724-4729 (2016) 

[46] Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, All-solid-state flexible ultrathin micro-

supercapacitors based on graphene. Adv. Mater. 25, 4035-4042 (2013) 

[47] Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang, Z. Hu, On-chip interdigitated supercapacitor 

based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 

107-115 (2015) 

[48] H. Cheng, Z. Dong, C. Hu, Y. Zhao, Y. Hu, L. Qu, N. Chen, L. Dai, Textile electrodes 

woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. 

Nanoscale 5, 3428-3434 (2013) 

[49] T. Jiang, R. Huang, Y. Zhu, Interfacial sliding and buckling of monolayer graphene on a 

stretchable substrate. Adv. Funct. Mater. 24, 396-402  (2014) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

22 

[50] Z. Bo, W. Zhu, W. Ma, Z. Wen, X. Shuai, J. Chen, J. Yan, Z. Wang, K. Cen, X. Feng, 

Vertically oriented graphene bridging active-layer/current-collector interface for ultrahigh rate 

supercapacitors. Adv. Mater. 25, 5799-5806 (2013) 

[51] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner, 

Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639-3665 (2015) 

[52] J. Yeo, G. Kim, S. Hong, M.S. Kim, D. Kim, J. Lee, H.B. Lee, J. Kwon, Y.D. Suh, H.W. 

Kang, H.J. Sung, J.H. Choi, W.H. Hong, J.M. Ko, S.H. Lee, S.H. Choa, S.H. Ko, Flexible 

supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed 

metal nanoparticle ink for wearable electronics application. J. Power Sources 246, 562-568 

(2014) 

[53] S. Eigler, M. Enzelberger-Heim, S. Grimm, P. Hofmann, W. Kroener, A. Geworski, C. 

Dotzer, M. Rockert, J. Xiao, C. Papp, O. Lytken, H.P. Steinruck, P. Muller, A. Hirsch, Wet 

chemical synthesis of graphene. Adv. Mater. 25, 3583-3587 (2013) 

[54] X. Wang, H. Bai, G. Shi, Size fractionation of graphene oxide sheets by pH-assisted 

selective sedimentation. J. Am. Chem. Soc. 133, 6338-6342 (2011) 

[55] Y.R. Nian, H.S. Teng, Nitric acid modification of activated carbon electrodes for 

improvement of electrochemical capacitance. J. Electrochem. Soc. 149, 1008–1014 (2002) 

[56] J.M. Sieben, A. Anson-Casaos, F. Montilla, M.T. Martínez, E. Morallón, Electrochemical 

behaviour of different redox probes on single wall carbon nanotube buckypaper-modified 

electrodes. Electrochim. Acta 135, 404-411 (2014) 

[57] Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered whiskerlike polyaniline grown on the surface of 

mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 18, 2619-2623 

(2006) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

23 

[58] L. Wen, F. Li and H.-M. Cheng, Carbon nanotubes and graphene for flexible 

electrochemical energy storage: from materials to devices. Adv. Mater. 28(22), 4306-4337 

(2016) 

[59] X. Peng, L. Peng, C. Wu and Y. Xie, Two dimensional nanomaterials for flexible 

supercapacitors. Chem. Soc. Rev. 43(10), 3303-3323 (2014) 

[60] M. Koo, K.I. Park, S.H. Lee, M. Suh, D.Y. Jeon, J.W. Choi, K. Kang, K.J. Lee, Bendable 

inorganic thin-film battery for fully flexible electronic systems. Nano Lett. 12 (9), 4810-4816 

(2012) 

[61] Z. Suo, E.Y. Ma, H. Gleskova , S. Wagner, Mechanics of rollable and foldable film-on-foil 

electronics. Appl. Phys. Lett. 74, 1177 (1999) 

[62] C. Portet, P.L. Taberna, P. Simon, , E. Flahaut, C. Laberty-Robert, High power density 

electrodes for Carbon supercapacitor applications. Electrochim. Acta 50, 4174-4181 (2005) 

[63] M.F. El-Kady, M. Ihns, M. Li, J.Y. Hwang, M.F. Mousavi, L. Chaney, A.T Lech, R.B. 

Kaner. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-

performance integrated energy storage. Proc. Natl. Acad. Sci. U. S. A. 112, 4233-4238 (2015) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

24 

 

Captions for figures: 

Fig. 1. Schematic illustration of the preparation process. (a) Successive filtration of RGO colloid 

and graphite suspension to deposit graphite flakes on the surface of RGO hydrogel. (b) Insertion 

of graphite flakes and in-situ polymerization of aniline onto RGO. (c) Digital images of flexible 

RGO/G and PANI/RGO/G hydrogel films after compression. 

Fig. 2. SEM images of the surface of RGO hydrogel from (a) top view and (b) side perspective, 

(c) the surface of graphite side of RGO/G film (inset image shows its high magnification image), 

(d) the surface of PANI/RGO hydrogel and (e, f) at high magnification, (g) the cross-section of 

PANI/RGO hydrogel and (h, i) at high magnification. 

Fig. 3. Cyclic voltammogram curves of (a) RGO/G and (b) PANI/RGO/G at various scan rates 

from 5 to 50 mV s1 collected in a three-electrode system with an Ag/AgCl reference in 1 M 

H2SO4. Note that the y-scale in (a) is much smaller than (b). 

Fig. 4. (a) Image of one fixed set for bending ability test and the illustration of the bending angle. 

Normalized resistances of prepared hydrogel films after bending as a function of (b) the bending 

angle and (c) the number of bending (the red cross indicates when the fracture occurs). 

Fig. 5. (a) Schematic diagram of PANI/RGO/G hydrogel film on a PET substrate and the 

different extensions upon the radius caused by bending. (b) Free-movement configuration and its 

mechanism to reduce the stress force during bending. (c) Illustration for constructing flexible 

supercapacitor devices using a free-movement configuration (cross section). 

Fig. 6. Electrochemical performance of symmetric flexible devices using various prepared films. 

Galvanostatic discharge curves of (a) PANI/RGO and (b) PANI/RGO/G devices at various 

current densities from 1 mA cm2 to 10 mA cm2; inset graph shows the summary of their IRdrop 
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vs current densities. Cyclic voltammograms of (c) dry PANI/RGO/G and (d) PANI/RGO/G 

hydrogel film device at different scan rates from 5 mV s1 to 100 mV s1. (e) Nyquist plots 

demonstrate the effect of graphite current collector and wet-state of the films on Rct. (f) Cycling 

stability of RGO/G and PANI/RGO/G devices at a high current density of 5 mA cm2 (inset 

image shows their areal energy densities vs average power densities). 

Fig. 7. Flexibility of PANI/RGO/G device using a free-movement configuration. (a) Cyclic 

voltammograms at various bending angles at 10 mV s1. (b) Capacitance retention after various 

bending cycles at angles of 90° and 120° (inset image shows the deformation of gel electrolyte). 

Fig. 8. Chargedischarge curves of a single and three PANI/RGO/G devices in series at 1 mA 

cm2. Inset photograph displays a red LED lighted by these three devices in series. 
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