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ABSTRACT 

In this work, three melt blown grades of isotactic linear polypropylenes, with weight 

average molecular weights between 56 250 - 75 850 g/mol, have been characterized at 

230 oC over a very wide shear rate range (10-107 1/s) by using conventional rotational and 

twin bore capillary rheometry equipped with novel orifice die design, and by an 

instrumented capillary nozzle on an injection molding machine. A low shear rate primary 

Newtonian plateau, a pseudoplastic region and a well developed secondary Newtonian 

plateau (occurring between 66 107102   1/s) were identified for all the polypropylene 

melts. Considering the typical value of pressure sensitivity coefficient for polypropylene 

melt, β = 20.00 GPa-1, and measured flow activation energy at the secondary Newtonian 

plateau, E = 25.204 kJ/mol, it was found that the effect of viscous dissipation and 

pressure is mutually cancelled, i.e. that the measured viscosity data can be considered as 

the true material property within the whole applied shear rate range. For the first time, it 

has been revealed that the secondary Newtonian viscosity, , depends linearly on the 

weight average molecular weight, Mw, in log-log scale as 
084.161019.1 wM

  . The 

observed slope close to 1 between  and Mw suggests that polymer chains in the melt are 

disentangled at the secondary Newtonian plateau region. This conclusion is supported by 

the experimental observation that the high shear rate flow activation energy E for given 

PP melts is comparable with the flow activation energy of PP like oligomer (squalane, 

C30H62; 2,6,10,15,19,23-hexamethyltetracosane). The measured flow data were fitted by 

six different viscosity models, from which two, namely Modified Carreau and Quemada 

models, were suggested here for the first time. It has been found that the accuracy of 

utilized models to describe the measured data is the highest for the newly suggested 

models and decreases in the following order: Modified Quemada model, Modified Carreau 



model, Carreau-Yasuda model, Cross model, Generalized Quemada model and Carreau 

model. 

INTRODUCTION 

 Melt blowing is a fabrication process typically used in the production of nonwoven 

polymer micro-fibers. Low viscosity polymers are extruded through a spinnerette die 

containing several hundred holes. At the end of the die, an air manifold is located to provide 

hot and compressed high velocity air, which stretches the melt creating fibers when it leaves 

the spinnerette (see Figure 1). It has been reported that polymeric nanofibers can also be 

produced by melt blown technology through, firstly, changing of processing conditions [1], 

secondly, by the polymer modification [2-3], and finally, by utilizing a special die where 

orifice diameters, D, are very small (0.064 mm-0.125 mm) and length-to-diameter ratio, L/D, 

is very large (20/1-1000/1) [4-6]. Thus, it is possible to produce nanofibers at reasonable 

rates, and provide melt blown fibers of the same size range as those previously exclusive to 

the domain of electrospinning technology [3, 6-8]. 

Polypropylene is the most widely used polymer in the melt blown technology due to its 

low cost, ease of processing, good mechanical properties, and chemical inertness [9-12]. In 

order to understand the formation of nanofibers and process stability, it is necessary to know 

rheological behavior of these polymers. Probably the first researcher to perform a detailed 

rheological characterization of melt blown PPs was Yizhong Wang [13]. Wang characterized 

two ExxonMobil Escorene melt blown PPs (MFI of 400 and 1200 g/10min) at 185-240 oC 

using an Advanced Rheometric Expansion System (ARES, frequency range 0.1-100 rad/s) 

and advanced capillary extrusion rheometer covering shear rates in the range 1 to 105 1/s. 

Later, Rajkishore Nayak [14] investigated the rheological behaviour of four melt blown PPs 

(MFI of 100, 300, 1000 and 2000 g/10min with Mw of 100 875, 77 590, 60 238 and 55 509 



g/mol) between 180-210 oC utilizing an ARES in dynamic mode and low frequency range 

(0.1-100 rad/s). Both authors showed that conventional rheological tools can be used for 

rheological characterization of very low viscosity melt blown PPs but, such tools are limited 

in being unable to cover extreme deformation rate range typical for melt blown technology, 

i.e. 106-107 1/s [1, 15], which significantly limits optimization of this process. 

There are only a few papers reporting shear viscosity measurements for polymer melts at 

such high shear rate range utilizing specially designed rheological equipment such as 

hydraulically powered capillary rheometer [16] or an instrumented injection molding 

machine [17, 18-20]. With respect to polyolefins (such as polypropylene, PP, high-density 

polyethylene, HDPE, and ultra-high-molecular-weight polyethylene, UHMWPE), the 

following key conclusions have been found. 

 Firstly, HDPE and UHMWPE exhibit a Newtonian behaviour between about 6103  - 

6105  1/s [16] whereas at higher shear rates, the second shear thinning region was observed. 

In this flow regime, shear viscosity decreases with the shear rate mainly due to polymer chain 

scission, which was confirmed via monitoring of weight average molecular weight, Mw, of 

extruded HDPE at high shear rates. Secondly, a well-developed secondary Newtonian plateau 

was found for four different polypropylenes between approximately 
6101  - 

6108   1/s [16-

20]. In this case, no second shear thinning or thickening region was detected within whole 

applied high shear rate range. On the other hand, it was found that the secondary Newtonian 

plateau for specific PP grade can be followed by the shear thickening behaviour occurring at 

the highest shear rates if the effect of pressure prevails over the effect of viscous dissipation 

[17]. 

 Finaly, Takahashi et al. [16] compared flow curves, containing secondary Newtonian 

plateau, for HDPE and UHMWPE samples (having about an order of magnitude different 

Mw) and concluded that the viscosity dependence on Mw is small at high shear rates. Kelly et 



al. [17] provided similar comparison for two PPs with different Mw (192 000 and 283 000) 

with the suggestion that ‘…molecular size or structure may influence the observed high strain 

plateau’. 

 With the aim to understand flow behaviour of melt blown polymers in more detail, 

three linear isotactic PP samples with melt flow rate between 450-1200 g/10min were 

characterized over a very wide deformation rate range (10-107 1/s) by using rotational and 

capillary rheometry as well as by the instrumented injection molding machine equipped with 

interchangeable dies. In the second part of this work, the fitting capability of different simple 

shear viscosity models were evaluated for all tested polymer samples. 

EXPERIMENTAL 

In this work, linear isotactic PP Borflow HL504FB (76k), HL508FB (64k) and HL512FB 

(56k) produced by Borealis Polyolefine have been used. Basic characteristics of their pellets 

are summarized in Table 1. 

Low shear rate viscosity data were measured on an Advanced Rheometric Expansion 

System (ARES 2000 model, Rheometrics Scientific, USA) at 190, 210 and 230 oC in parallel 

plate mode. The aluminium bottom plate with the overflow channel was used to prevent 

polymer melt leakage flow out of the geometry. A Rosand RH7-2 twin bore capillary 

rheometer, together with Bagley and Rabinowitsch corrections, has been utilized for the 

determination of shear viscosities at medium shear rates by using a novel patented orifice die 

[21-22]. The main advantage of the utilized orifice die is the open downstream region design 

which eliminates any possibility for artificial pressure increase due to polymer melt touching 

the downstream wall. In this work, three long dies (length to diameter ratio, L/D, equal to 16, 

D1=0.15 mm, D2=0.5 mm, D3=1 mm) and three orifice dies with the same diameters were 

used. Close fitting piston tips of the instrument were made from polyether ether ketone 



(PEEK). The PEEK piston tips are used in order to prevent any possible polymer melt 

leakage flow between the piston tips and the barrel due to very low shear viscosity of the melt 

blown samples. Furthermore, it was found necessary to use polytetrafluoroethylene tape to 

prevent polymer melt leakage flow between the die holder and capillary rheometer barrel as it 

is shown in Figure 2.   

The measurements were performed in a constant piston speed mode at the shear rate range 

of (30-640000) s-1 and 230 oC. In our measurements we used pressure transducers (Dynisco, 

USA) in ranges of (10000) PSI (68.9476 MPa), (1500) PSI (10.3421 MPa), (500) PSI (3.4473 

MPa). To improve accuracy of measured data at low shear rates range the highly sensitive 

pressure transducer (250) PSI (1.7237 MPa) calibrated to its resolution limit was used for 

recording pressure at the entrance to the orifice capillary die. The compressed air based 

device, CCS 20 from AMV Messgeräte GmbH, was used to calibrate this pressure 

transducers by using 69 calibration points. 

For high strain rate rheometry at 190, 210 and 230 oC, a high accuracy Fanuc Roboshot S-

2000i electric high-speed injection molding machine was used, with screw diameter 22 mm 

and a maximum barrel pressure rating of 240 MPa. The machine was operated in air-shot 

mode using an instrumented rheometric capillary die nozzle (see Figure 3). Melt pressure was 

measured at the capillary die entrance at a frequency of 100 Hz using a Kistler 4021A 

pressure transducer. Injection screw position and velocity were also monitored at the same 

frequency. Polymer was injected over a velocity range of 2.6 mm/s to 220 mm/s firstly 

through a capillary die of 8 mm length and diameter 0.5 mm, and then tests were repeated 

with an orifice die of the same diameter enabling Bagley and Rabinowitsch corrections. 

Polymer was plasticized in the screw of the molding machine at a screw rotation speed of 

2.83 revolutions per second with the back pressure of 0.1 MPa. Injection was initiated 

following a dwell time of 30 s. Process data were collected using a LabView SC2345 data 



acquisition unit triggered by a 24 V signal from the injection molding machine at the start of 

injection. More details about this instrument and its accuracy are provided in [17].  

SHEAR VISCOSITY MODELS 

In this work, the following simple shear viscosity models with capability to describe the 

primary and the secondary Newtonian plateau via η0 and η∞ parameter, respectively, were 

utilized.  

  

4-parametric Cross model [23] 
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where η0, η∞, λ and a are model parameters. 

 

4-parametric Carreau model [24] 
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where η0, η∞, λ and n are model parameters. 

 

4-parametric Generalized Quemada model [25, 26] 
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where η0, η∞, a and tc are model parameters. 

 

 

 



5-parametric Carreau-Yasuda model [27] 
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where η0, η∞, λ, a and n are model parameters. 

 

Suggested 5-parametric Modified Quemada 
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where η0, η∞, a, n and tc are model parameters. 

 

Suggested 5-parametric Modified Carreau model 
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where     is given by Eq.2, and η0, η∞, λ, a and n are model parameters. 

 

It is important to note that   in all above equations represents the shear rate and Eqs. 6-7 can 

be used to modify any viscosity function defined via    . 

RESULTS AND DISCUSSION 

  In order to keep the relationship between the measured rheological data and molecular 

structure clear, MWDs and basic molecular weight averages were measured by high 

temperature gel permeation chromatography for PP extrudates processed (i.e. rheologically 

evaluated) at high shear rates (see Figure 4 and Table 2). Processed samples exposed to a 



residence time at the processing temperature for about 1 hour were also used for low as well 

as medium shear rate measurements.  

Measured shear viscosity data plotted as a function of shear rate at 230oC are provided in 

Figure 5 for all melt blown polymer samples. The ARES 2000 torque transducer 2K FRTN1 

with a 2μNm low resolution limit allowed measurements of no scattered data only above 

about 10 1/s. Pressure measurements at very high shear rates, performed on the injection 

molding machine, were repeated at each given velocity three times, averaged, and then the 

pressure transducer was calibrated by the help of an additional measurement at the reference 

injection velocity. This procedure was repeated for all utilized injection velocities and both 

dies. Gross errors in pressure measurements caused by unwanted recalibration of pressure 

transducers were excluded from the analysis. Low strain rate primary as well as high strain 

rate secondary Newtonian plateaus can clearly be identified (summarization is provided in 

Table 3). Standard deviations for each viscosity point at the secondary Newtonian plateau 

were found to be typically 0.004, 0.006 and 0.007 Pa.s for 76k, 64k and 56k samples, 

respectively, which indicates very good reproducibility of performed viscosity measurements. 

Interestingly, the secondary Newtonian plateau starts at a shear rate of approximately 6102   

1/s and it is well developed up to 6107   1/s with no additional second shear thinning region. 

The fact that there is no additional second shear thinning region indicates no chain scission 

occurs with the given melt blown PPs at these rates. This finding is similar to the 

experimental work of Takahashi et al. [16] who report that ‘… very little change in molecular 

weight was observed for HDPE with a weak molecular interaction, even under high shear 

rates of the second Newtonian region’. ‘In the high shear rate above 6107   s-1, where the 

second non-Newtonian region appears …, the molecular weight of HDPE seems to gradually 

decrease’. On the other hand, the occurrence of very well developed secondary Newtonian 

plateau for PP at 230oC between 6102   1/s and 6107   1/s is in good correspondence with the 



comparable experimental work for conventional low melt flow index polypropylenes [16, 18, 

19] obtained at the same temperature, i.e. at the 230 oC. In more detail, Takahashi et al. [16], 

utilizing a hydraulically powered capillary rheometer for polypropylene having MFI = 5.8 

g/10min (PP K1016 from Chisso), reported well developed secondary Newtonian plateaus at 

shear rates of about 61081 .  and 6106   1/s. Similar secondary Newtonian plateaus were 

reported for a polypropylene with a MFI of 12 g/10min (PP 3120MN1 from Appryl) by 

Haddout and Villoutreix [18] and Benhadou et al. [19], between 61031 .  1/s and 6108   1/s 

utilizing an instrumented injection molding machine equipped with a cylindrical instrumented 

nozzle with variable diameter. This suggests the onset of a secondary Newtonian region is 

insensitive (or weakly sensitive) to the melt flow index (i.e. on the molecular weight) of 

polypropylenes at a given temperature. On the other hand, the viscosity at the secondary 

Newtonian plateau,  , reported in this work for low molecular weight PPs is almost one 

order of magnitude lower in comparison with conventional high molecular weight PPs 

reported in [16, 18, 19] at the same temperature 230 oC. This can be understood by 

considering a lower friction between highly oriented macromolecules. At very high shear 

rates, where entanglements between the chains do not longer exist, intermolecular resistance 

is much reduced for lower molecular weight PPs in comparison with high molecular weight 

PPs.  

Reynolds number, defined below, was used to determine the character of the flow at the 

highest shear rate range where a secondary Newtonian plateau occurs. The results of the three 

tested PP samples are summarized in Table 4. 






vD
Re             (8) 

where ρ is the melt density, v is average velocity, D is the capillary diameter and  is the 

melt viscosity at the secondary Newtonian plateau. Data in Table 4 shows Reynolds number 



for the shear rates between 6102  and 6102.6   1/s varies between 195 and 835. We can 

deduce that the flow is laminar. 

 

Flow activation energy: 

Measured values of 0 and   at three applied temperatures (190, 210 and 230oC) allows 

determination of flow activation energy at low (E0) as well as at high (E) shear rates via 

Arrhenius plot depicted in Figure 6. E0 was found to be 56.558 kJ/mol for 76k, 56.520 kJ/mol 

for 64k and 56.691 kJ/mol for 56k. These are practically identical for all tested polypropylene 

melts (average value is  090.0590.56   kJ/mol). These values of  E0 are in very good 

agreement with values reported for low molecular weight melt blown isotactic 

polypropylenes such as ExxonMobil Escorene PP3546G (E0 = 62 kJ/mol, MFI=1200 g/10 

min at 230oC/2.16kg) or PP3505G (E0 = 46.8 kJ/mol, MFI=400 g/10 min at 230oC/2.16kg) 

[13]. On the other hand, E was found to be much smaller, 23.395 kJ/mol for 76k, 26.916 

kJ/mol for 64k and 25.301 kJ/mol for 56k (average value is 763.1204.25   kJ/mol). Relating 

average values of E and E0 yields the following relationship: 

044540 E.E                (9) 

In order to discuss the physical meaning of the significant change between E0 and E in 

more detail let us compare E with flow activation energy of the PP like oligomer called 

squalane (C30H62; 2,6,10,15,19,23-hexamethyltetracosane, see Figure 7) having molecular 

weight equal to 442.8 g/mol. Viscosity data for squalane have recently been measured over a 

wide range of temperatures (up to 200oC) and pressures (up to 200MPa) [28]. These data 

(taken from Table 7 in [28]) together with Arrhenius equation were utilized here to determine 

average flow activation energy of squalene, Esqualane= 633.1804.19  kJ/mol (see Figure 8). 

Comparable values of Esqualane and E for isotactic PP strongly supports the conclusion that 



polymer chains of our tested PPs become disentangled at the secondary Newtonian plateau 

region. The significant change in the flow activation energy of the PPs can thus be attributed 

to change from entangled to disentangled state of PP chains due to strong shear flow, at 

which polymer chains become less close packed. This leads to a decrease in monomeric 

friction coefficient and increased free volume due to coalescence of shaped/aligned i.e. 

anisometric, free volume cavities. Such void shape spatial change increases the availability of 

sufficiently large free volume cavities making the flow easier. More detailed discussion on 

free volume concept of polymer viscosity is provided in [29]. As recognized by Fox and 

Flory [30], increase in the free volume diminishes flow activation energy for disentangled 

polymer melts by decreasing number average molecular weight below a critical molecular 

weight, which is ~13800 g/mol for isotactic PP considering molecular weight between chain 

entanglement points Me = 6900 g/mol [31] (see also [32]).      

 

Effect of viscous dissipation and pressure: 

At very high shear rates, there is simultaneous effect of viscous dissipation and 

compressibility, both having significant effect on the polymer melt viscosity [17, 20]. 

Viscous dissipation is an irreversible transformation of mechanical energy (the work done 

by the melt during the shear flow) into heat energy due to internal friction of adjacent 

polymer chains. Considering the Arrhenius relationship between viscosity and temperature 

[33, 34] as well as the temperature rise due to viscous dissipation, the shear viscosity at the 

secondary Newtonian region  , can be expressed as; 
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where, T is the actual experimental temperature including effect of viscous dissipation, Tr is 

the reference temperature, R is the universal gas constant (8.314 J/K/mol) and E is the flow 

activation energy at high shear rates.   



Another factor influencing shear viscosity in the secondary Newtonian plateau region is 

pressure. The Barus equation [35] handles the relationship between shear viscosity and 

pressure and leads to the following expression for  : 

    p
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where p is the experimentally measured average pressure (Δp/2 in this work), pr is the 

reference (ambient) pressure and β is the pressure sensitivity coefficient. 

The role of viscous dissipation and pressure for the experimental data reported in this 

work (i.e. where Tr = 503.15 K and Δp is the long capillary pressure drop) can be evaluated 

by combining Eqs. 10-11 leading to Eq. (12). 
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The existence of a well-developed secondary Newtonian region for all three tested melts 

suggests that the effect of viscous dissipation and pressure are mutually cancelled. In order to 

test this hypothesis high shear rate experiments in the secondary Newtonian region were 

followed via FEM simulations performed by solving mass, momentum and energy 

conservation equations. A commercial software, Compuplast VEL 6.8, was used with Eq.12 

as the constitutive equation and applying realistic boundary conditions (wall temperature was 

imposed to 230oC instead of adiabatic, i.e. insulated wall). The pressure sensitivity coefficient 

β was determined through matching calculated and measured pressure drop in given capillary 

flow for all three materials. In particular, β was adjusted to make the increase in apparent 

shear viscosity due to pressure equal the decrease in viscosity due to shear heating. Simulated 

flow domain together with utilized structured triangular mesh is provided in Figure 9. The 

flow was modeled as an axi-symmetric with the grid consisting of 8 300 triangle elements, 

which was sufficient to accurately describe the flow field. In the flow simulation, the 

following basic polypropylene melt characteristics at 230oC were used ρ=712.33 kg/m3 [36], 



Cp=2705.16 J/kg/K [37], κ=0.2092 W/m/K [38]. The average pressure sensitivity parameter 

β was calculated to be 920020 ..  GPa-1 for the given material parameters and processing 

conditions. This value is in excellent agreement with the pressure sensitivity coefficient 

140321 ..   GPa-1 reported in [39] for polypropylene melt supporting the considered 

hypothesis. 

 It should be noted that β taken from the literature [39] was determined by 

superposition (i.e. shear rate and pressure influencing viscosity were taken into account by a 

single shift factor), which is shear-rate independent, thus providing a shear rate-independent 

value of β. It has been shown in [40, 41, 42], that the pressure sensitivity parameter in the 

power-law regime, * , can be lower than β according to following equation 

  n*                      (13) 

where n is the power-law exponent. Thus, utilization of the shear rate-independent β for flow 

modelling of the secondary Newtonian plateau regime, where n=1, can be considered 

reasonable.  

Finally, it has been found that thermal conductivity can increase with shear rate for 

pseudoplastic polymer solutions. This is attributed to the altered structural state of the liquid 

(the chains are more aligned) and molecular entanglements (formation of rotating units of 

entangled clusters) [43]. However, more recently, it has been shown via positron annihilation 

lifetime spectroscopy measurements that the thermal conductivity decreases with increased 

free volume, which enhances phonon scattering (hence decreasing the thermal conductivity) 

[44]. Thus, we consider the utilization of a constant thermal conductivity for the flow 

modeling in the secondary Newtonian plateau (at which the free volume is increased 

considerably due to chain disentanglement) as reasonable assuming that the effect of shear 

rate and free volume on thermal conductivity is mutually cancelled in this flow regime.    

 



Effect of weight average molecular weight on 0 and : 

Zero shear viscosity, 0, and the secondary Newtonian viscosity, , are plotted as a 

function of average molecular weight in log-log-scale in Figure 10. The following power-law 

equations can be used to fit the experimental data.  

622.317

0 1073.4 wM                   (14) 

084.161019.1 wM

                     (15) 

If the molecular weight of polymers exceeds the critical molecular weight Mc, which is 

about 2-3 times molecular weight between chain entanglement points (i.e. eM 6900 g/mol 

for isotactic PP [31]), the exponent is about 3.4-3.6, whereas bellow Mc it is about 1 [45, 46]. 

Wasserman and Graessley [45, 47, 48] reported the following relationship for linear isotactic 

polypropylene:  

  60317

0 10325
.

wM.s.Pa      (190 oC)                 (16) 

As it can be seen, parameters of Equation (16) agree well with the experimentally 

determined relationship given by Eq.14, confirming the existence of entanglements between 

the chains at very low shear rates. It also supports the validity of the zero shear viscosities 

and average molecular weights reported in this work for the low molecular weight 

polypropylenes. In the case of the secondary Newtonian viscosity, , the proportionality 

constant is about 10 orders of magnitudes higher than in the case of zero shear rate viscosity 

and the exponent on Mw is close to 1. According to Rouse-Bueche molecular theory [45, 49], 

the viscosity of molten polymers with no entangled molecules is proportional to molecular 

weight. This suggests there are no entanglements between the chains at the secondary 

Newtonian region and the resistance against the flow is given here only by the friction 

between the highly oriented macromolecular chains (depending predominantly on their size, 

packing level and conformational state).  



If Eqs.14-15 are combined the secondary Newtonian viscosity, , can be expressed via 

the zero shear viscosity, 0, and weight average molecular weight, Mw, as follows:  

 538.2

w0

11 M102516.0 

                     (17) 

Additionally, it has been proved experimentally by Takahashi et.al. [16], there is no wall 

slip at very high shear rates for PP at 230oC (i.e. for the same polymer and flow conditions 

utilized in our work). In their experiments, the authors have used two kinds of the capillaries 

with same L/D ratio (20) but different diameters (0.5 mm, 1 mm). Their findings support the 

validity of high strain rate rheological measurements performed in this work as well as the 

conclusion that the polymers chains are fully disentangled at high shear rates. 

 

Rheological modeling: 

In this section we investigate the fitting capabilities of conventional (Eqs. 1-4) as well as 

modified (Eqs. 5-7) rheological models, suggested here for the first time, to describe 

measured rheological data. Model parameters characterizing the primary and the secondary 

Newtonian plateau (i.e. η0, and η∞) were fixed whereas the remaining parameters were varied 

to minimize least squares between the experimental data and model predictions. Comparison 

between the measured data and model fitting curves is provided in Figs. 11-13. Fitting errors 

for each model and given polymer melt were evaluated via the Root Mean Squared Error 

(RMSE) defined as 

 






 1

21

i

ii )ˆlog()log(RMSE                                                                                          (18) 

where δ is the number of measured points, ηi and i̂  represent measured and predicted 

shear viscosity points at given shear rate (see Tables 5-7). All model parameters are 

summarized in Tables 8-10.  

 



Based on the Tables 5-7 and Figs. 11-13, the following conclusions can be formulated: 

 5-parametric viscosity models provide a closer fit to describing the measured data 

than 4-parametric models, as expected. 

 The capability of utilized models to describe the measured data decreases in the 

following order: Modified Quemada model, Modified Carreau model, Carreau-

Yasuda model, Cross model, Generalized Quemada model and Carreau model. Note 

that the Total RMSE, provided in Table 11 for each model, represents the sum of 

Root mean squared error determined for all three polypropylene samples (Total 

RMSE). 

 Modified Quemada model and Cross models more accurately describe the measured 

shear viscosity data from all utilized 5-parametric and 4-parametric models, 

respectively. 

 

One may consider under what circumstances are proposed modified 5 parameter models more 

desirable than the conventional models? One of the key reasons for going to 5 parameters 

models are their improved flexibility do describe experimental data, especially at the high 

shear rate range. For example, the 4-parametric Cross model over predicts shear viscosity by 

12% (average) - 26% (maximum deviation) at shear rates between 
5102.1   1/s and 

61073.6   

1/s for given PPs at T=230oC. Consequently, when trying to predict the pressure drop in 

capillary flows for the given materials and processing conditions utilizing the Cross model, 

the error in the predicted pressure drop can reach 26%, which is unacceptable considering 

that the experimental pressure drops can be in order of tens or hundreds MPa at such high 

shear rates.   



CONCLUSION 

In this work, three linear melt blown isotactic polypropylenes, with weight average molecular 

weights between 56250-75850 g/mol, have been characterized at 230 oC over a very wide 

shear strain rate range (10 - 107 1/s) by using; rotational and twin bore capillary rheometer 

equipped with a novel inert orifice die design as well as by an instrumented rheometric 

nozzle on an injection molding machine. Flow activation energy at low (E0) and high (E) 

shear rates was found to be 090.0590.56   kJ/mol and 763.1204.25   kJ/mol, respectively. 

A primary Newtonian plateau, pseudoplastic region and well developed secondary 

Newtonian plateau (occurring between 66 107102   1/s) were identified for all 

polypropylene melts. Based on the estimated pressure sensitivity coefficient, β = 20.00 GPa-1, 

which is typical value for polypropylene melts [39], it was deduced that the effect of viscous 

dissipation and pressure is mutually cancelled, i.e. that the measured viscosity data can be 

considered as the true material property within whole applied shear rate range. For the first 

time, it has been revealed that the secondary Newtonian viscosity, , depends linearly on the 

weight average molecular weight, Mw, in log-log scale as 
084.1

61019.1 wM

  . The 

observed slope close to 1 between  and Mw suggests that polymer chains in the melt are 

disentangled at the secondary Newtonian plateau region. This conclusion is supported by the 

experimental observation that the high shear rate flow activation energy E for given PP 

melts is comparable with the flow activation energy of PP like oligomer (squalane, C30H62; 

2,6,10,15,19,23-hexamethyltetracosane). 

 The measured flow curves were fitted by six different viscosity models. Two 

modified models, namely a modified Carreau and a Quemada model were developed. It has 

been found the shear flow data could be more accurately described over the wide strain rate 

range by the newly suggested models. The accuracy of curve fitting decreases in the 



following order: Modified Quemada model, Modified Carreau model, Carreau-Yasuda 

model, Cross model, Generalized Quemada model and Carreau model. 
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TABLE 1. Basic characteristics of utilized melt blown polypropylenes (pellets). 

 

 

Sample 

Name 

 

Melt flow index 

at 2.16 kg and 

230°C  

(g.10min-1) 

DSC peak 

melting point  

(°C) 

Mn 

(g.mol-1) 

Mw 

(g.mol-1) 

Mz 

(g.mol-1) 

Mz+1 

(g.mol-1) 

Mw/Mn  

(-) 

HL504FB 450 161-165 20100 112500 284500 510500 5.60 

HL508FB 800 156-160 17050 104500 282000 533000 6.13 

HL512FB 1200 156-160 16950 90950 220500 384500 5.37 

 

 

TABLE 2. Molecular characteristics of utilized melt blown polypropylene melts (processed 

samples, i.e. high shear rate extrudates). 

 

 

Sample 

Name 

 

Mn 

(g.mol-1) 

Mw 

(g.mol-1) 

Mz 

(g.mol-1) 

Mz+1 

(g.mol-1) 

Mw/Mn  

(-) 

HL504FB (76k) 17200 75850 165500 278000 4.41 

HL508FB (64k) 14650 63750 138000 235500 4.35 

HL512FB (56k) 14250 56250 114500 187500 3.95 

 

 

 

TABLE 3. Summary of experimentally determined values for zero shear viscosity, 0, and 

secondary Newtonian viscosity, , at 230 oC. 

 

Sample 

name 

η0  

(Pa.s) 

Standard deviation for η0 

(Pa.s) 
η  

(Pa.s) 

Standard deviation for η 

(Pa.s) 

76k 22.80 1.149 0.229 0.0025 

64k 11.27 0.671 0.199 0.0018 

56k 7.79 0.312 0.165 0.0005 

 

 

 

TABLE 4. Calculated Reynolds numbers at the secondary Newtonian region for all three 

tested polymer melts, T= 230 oC. 

 

Shear rate 

(1/s) 

Re, 56k 

(-) 

Re, 64k 

(-) 

Re, 76k 

(-) 

2 010 342 271 225 195 

3 184 333 429 357 309 

5 049 088 681 566 490 

6 195 200 835 694 601 

 

 



TABLE 5.  Fitting error (Root mean squared error – RMSE) for each utilized model sorted 

from the best to the worst for linear PP Borflow 76k, T=230 °C. 

 

Model name RMSE 

Modified Quemada model  0.018276236 

Modified Carreau model 0.029749727 

Carreau-Yasuda model 0.040775109 

Cross model 0.047118675 

Generalized Quemada model 0.049006845 

Carreau model 0.065738895 

 

 

TABLE 6.  Fitting error (Root mean squared error – RMSE) for each utilized model sorted 

from the best to the worst for linear PP Borflow 64k, T=230 °C. 

 

Model name RMSE 

Modified Quemada model 0.025431753 

Modified Carreau model 0.027975200 

Carreau-Yasuda model 0.035497268 

Cross model 0.047207561 

Generalized Quemada model 0.048729021 

Carreau model 0.067596955 
 

 

 

TABLE 7.  Fitting error (Root mean squared error – RMSE) for each utilized model sorted 

from the best to the worst for linear PP Borflow 56k, T=230 °C. 

 

Model name RMSE 

Modified Quemada model 0.022267806 

Modified Carreau model  0.028009255 

Carreau-Yasuda model 0.038134394 

Cross model 0.047852717 

Generalized Quemada model 0.049003044 

Carreau model 0.066374374 
 

 

 

 

TABLE 8. Fitting parameters for each utilized model for 76k, T=230 °C. 

 

Model name 
η0  

(Pa.s) 

λ  

(s) 

a  

(-) 

n  

(-) 

η∞  

(Pa.s) 

tc  

(s) 

Cross model 22.80 0.000356 0.916622 - 0.229 - 

Carreau model 22.80 0.000548 - 0.434384 0.229 - 

Carreau-Yasuda model 22.80 0.000222 0.714663 1×10-12 0.229 - 

Generalized Quemada model 22.80 - 1.085421 - 0.229 0.00000297400 

Modified Quemada model 22.80 - 0.192343 0.888196 0.229 0.00148998839 

Modified Carreau model 22.80 0.002294 6.141027 0.238632 0.229 - 

 



TABLE 9. Fitting parameters for each utilized model for 64k, T=230 °C. 

 

Model name 
η0  

(Pa.s) 

λ  

(s) 

a  

(-) 

n  

(-) 

η∞  

(Pa.s) 

tc  

(s) 

Cross model 11.27 0.000203 0.889544 - 0.199 - 

Carreau model 11.27 0.000282 - 0.442027 0.199 - 

Carreau-Yasuda model 11.27 0.000101 0.644103 1×10-12 0.199 - 

Generalized Quemada model 11.27 - 1.141995 - 0.199 0.00000278757 

Modified Quemada model 11.27 - 0.152248 0.920448 0.199 0.00098232952 

Modified Carreau model 11.27 0.003327 15.29982 0.154333 0.199 - 

 

 

 

TABLE 10. Fitting parameters for each utilized model for 56k, T=230 °C. 

 

Model name 
η0  

(Pa.s) 

λ  

(s) 

a  

(-) 

n  

(-) 

η∞ 

 (Pa.s) 

tc  

(s) 

Cross model 7.79 0.000128 0.909926 - 0.165 - 

Carreau model 7.79 0.000191 - 0.442092 0.165 - 

Carreau-Yasuda model 7.79 0.000070 0.666422 1×10-12 0.165 - 

Generalized Quemada model 7.79 - 1.100310 - 0.165 0.00000228669 

Modified Quemada model 7.79 - 0.078774 0.959896 0.165 0.00065601827 

Modified Carreau model 7.79 0.006015 60.95602 0.092772 0.165 - 

 

 

 

TABLE 11.  Sum of fitting errors (Root mean squared error – RMSE) for each utilized 

model sorted from the best to the worst for all three linear PP Borflow samples, T=230 °C. 

 

Model name Total RMSE 

Modified Quemada model 0.065975795 

Modified Carreau model  0.085734182 

Carreau-Yasuda model 0.114406771 

Cross model 0.142178953 

Generalized Quemada model 0.146738910 

Carreau model 0.199710224 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 1. Schematic of the melt blown process. 
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Figure 2. Visualization of die holder and bottom view of the die holder with the capillary die 

connected to barrel of the capillary during rheological measurements without (2a-2b) and 

with the polytetrafluoroethylene tape (2c-2d).    
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Figure 3. Schematic cross-section of assembled parts for the instrumented capillary nozzle 

fitted to the injection molding machine. 
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Figure 4. Molecular weight distribution (MWD) curves for all investigated linear isotactic 

melt blown polypropylenes (processed samples, i.e. high shear rate extrudates). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Deformation rate dependent shear viscosity data for linear isotactic PP Borflow 76k 

(top), 64k (middle) and 56k (bottom) samples at 230 oC. 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Arrhenius plot for 76k, 64k and 56k polypropylene melts considering 0 (top) and 

 (bottom). 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure 7. Chemical structure of Squalane (C30H62; 2,6,10,15,19,23-hexamethyltetracosane). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Arrhenius plot for Squalane (experimental data are taken from [28]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Geometrical sketch of simulated capillary die (left) and detail view of utilized 

triangular mesh at the entrance region (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Effect of weight average molecular weight, Mw, on zero shear viscosity, 0 (top), 

and secondary Newtonian viscosity,  (bottom) for polypropylene melts at 230 oC. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison between experimentally determined shear viscosity data and model 

predictions for linear isotactic PP Borflow 76k sample at 230 oC and fixed 0  and   

parameters. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison between experimentally determined shear viscosity data and model 

predictions for linear isotactic PP Borflow 64k sample at 230 oC and fixed 0  and   

parameters. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Comparison between experimentally determined shear viscosity data and model 

predictions for linear isotactic PP Borflow 56k sample at 230 oC and fixed 0  and   

parameters. 

 


