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Abstract. Neural Network Synthesis is a method based on based on Analytic Programming and 
asynchronous implementation of Self-Organising Migration Algorithm. This synthesis woks as an algorithm 
capable of creating and learning and artificial neural networks as well as optimizing their structures and 
connections. This paper introduce an idea of adaptive control of Self-Organising Migration Algorithm based 
on complexity of processed neural network structure. Such approach already recorded several successful 
application in modelling and simulation. 

1. Introduction 

Neural Network Synthesis (ANN synthesis) is an 
algorithm capable of creating and learning and artificial 
neural networks as well as optimizing their structures and 
connections. To describe this method in all details would 
significantly exceed a possible extend of this paper. 
Nevertheless ANN synthesis mechanisms are very well 
elaborated in papers [1] and [2]. An interested reader is 
respectfully asked to study this previous publications as 
are referred at the end of the paper.   

ANN synthesis is based on Analytic Programming (AP) 
and asynchronous implementation of Self-Organizing 
Migration Algorithm (SOMA). Important facts about AP 
which are necessary for basic understanding of an idea 
proposed in the paper as an adaptive individual handling 
are described in chapters 2. And 3. For better 
understanding of SOMA, please, refer paper [3] or [4].  

This paper explores a possibility to make it more 
effective by adaptive control of SOMA parameters. The 
main idea is an intelligent control of the ANN synthesis 
based on complexity of processed neural network 
structure.  

 

2. Analytic Programming 
The main principle (core) of AP is based on a discrete set 

handling (DSH) (Fig. 1). DSH shows itself as a universal 

interface between the EA and the symbolically solved 

problem. This is why AP can be used almost by any 

evolutionary algorithm. In the case of ANN synthesis the 

algorithm is SOMA.  

 
Figure 1. DSH principle 

Briefly stated, in AP, individuals consist of non-

numerical expressions (operators, functions,…) which are 

represented within the evolutionary process by their 

integer indexes.  Each index then serves as a pointer into 

the set of expressions and AP uses it to synthesize the 

resulting function-program for the Cost Function 

evaluation.  
=All simple functions and operators are in the so called 

General Function Set (GFS) divided into groups 

according to the number of arguments which can be 

inserted during the evolutionary process to create subsets 

GFS3, GFS2...GFS0.  
Table 1. Example of GFS and its subsets  
GFS Degree  Contains  

GFSall  f(x1, x2, x3), +, -, *, /, Power, Abs, Round, 
Sin, Cos, t, K, τ, 1, 2  

GFS3  f(x1, x2, x3)  
GFS2  +, -, *, /, Power  
GFS1  Abs, Round, Sin, Cos  
GFS0  t, K, τ, 1, 2   
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Figure 2. GFS subsets hierarchy

The functionality of AP can be seen in the specific 
example in Fig. 3:

Figure.3. Main principles of AP

The individual consists of 6 arguments (indices, 
pointers to GFS). The first index is 3, meaning that it is 
taken from the set of functions GFSall. The function 
minus has two arguments; therefore indexes 7 and 9 are 
arguments of minus.

6 + 7 (1)
Index 7 is then replaced by Abs and index 9 by Sin.

Abs + Sin (2)
Abs and Sin are one-argument functions. Then, index 9 
follows index 11, which is replaced by t.

Abs(t) + Sin (3)
Sin is also a one-argument function. Then, after index 11, 
the individual takes index 9, which is replaced by Sin and 
this Sin becomes an argument of the previous Sin.

Sin(Tan) + Sin(Sin( (4)
The last index is 2, but in this case there is the function 
Plus. Plus needs two arguments to work properly. AP 
will not allow this, as there is not any other free pointer to 
be used as the argument. Instead of Plus, AP will jump 
into the subspace, in this case directly to the GFS0arg. In 
the GFS0arg it finds the second element, which is K. And 
by doing so, we get (5). 

Abs(t) + Sin(Sin(K)) (5)
The number of pointers actually used from an 

individual before the synthesized expression is closed is 
called depth. This example is based on the relevant and 
previously published work in.

3. Neural Network Synthesis
The previous chapter described basic concepts of AP. 

Such concepts can be easily employed to synthetize 

different ANN structures as can be seen from Fig. 4. This 
process of structural synthesis as well as ANN learning is 
well described for example in [3] and [4].

Figure 4. An Example of ANN synthesis

4. Experiment Designed for Adaptive 
Control
Processes described in chapters 2. and 3. have to be 
optimized by a specific evolutionary algorithms. In case 
of ANN synthesis it basically means to try variously 
complex ANN structures (individuals in AP) to improve 
them in evolutionary way. In place of such evolutionary 
algorithm ANN synthesis commonly employ SOMA. An 
algorithm which is well described in [3] and [4]. 
However SOMA is not anyhow adaptive to coop with 
various lengths of individuals in AP. SOMA simply treat 
all such individuals as an individual of constant length 
(typically 100). For this paper one control parameter of 
SOMA was chosen to improve this behavior.

An adaptive control proposed in this paper aim to 
influence control parameter of SOMA named PRT to 
improve its ability to deal with different lengths of 
individuals. For each individual SOMA will used 
different setting of PRT bases on length of a solved 
individual itself.

Commonly, SOMA is set on PRT = 0.1. In 
contradiction this paper proposes adaptive strategy so 
PRT will differ from individual to individual PRT = 1 / 
depth.

In order to statistically evaluate this new adaptive 
handling approach the function approximation problem 
was chosen as an aim of the experiment. The function (6) 
proposed by [5] as an appropriate approximation 
benchmark was chosen to be approximated by the ANN. 

y = xi
5– 2 xi

3
+ xi

where xi is in <-1,by the step 0.04 ,1>

(6)

Fig. 5 (automatically generated by ANN synthesis 
software) shows an example of synthetized ANN 
approximating (6). The difference between the ANN and 
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(7) is depicted as a red area which could be minimized by 
the process of synthesis. An goal of ANN synthesis in 
this case can be simply described as founding smallest 
possible ANN able to approximate given function. 
Simplicity of such function is purely purposeful here as 
the main goal is not test ability of ANN synthesis to solve 
complicated tasks but to test how the method improve 
while applying proposed adaptive strategy. 

Figure 5. Approximation of (7) by synthetized ANN

AP was executed 100 times (physically on 8 cores of 
the Super Micro Server) to produce an ANN with the 
RMSD  < 0.005. The main intention was to find such an 
ANN which met this condition and which simultaneously 
used as few AN as possible. All SOMA’s control 
parameters required for repetition of this experiment are 
described in following tables. The setting of 
Asynchronous SOMA used as the EA for AP can be seen 
in Table 1. and SOMA setting used for ANN learning in 
Table 2.

Table 1. Setting of SOMA used as EA for AP

Number of Individuals 48
Individual Parameters 100

Low 0
High 3

PathLength 3
Step 0,11
PRT Based on experiment

Divergence 0.01
Period 1

Table 2. Setting of SOMA used to optimize Kn

Number of Individuals number ofKn* 0.5 (at least 10)
Individual Parameters 100

Low -10
High 10

PathLength 3
Step 0,11
PRT 1/Kn

Divergence 0.01
Period 6

Based on experiment setting PRT which SOMA used 
to optimize Kn is set either conservatively to PRT = 0.1 
or adaptively PRT = 1 / depth. 

5. Results
The control of SOMA parameters consists in replacement 
of the static PRT value by the value which inversely 
depends on depth of a currently operated individual.

Table 3. Static PRT vs. adaptive control
PRT = 1/ depth PRT = 0.1

Average time 
needed for synthesis

194 s 373s

Average number of 
used AN

9 13

A total of 1,189,870 evaluations of AP individual 
fitness were completed during 100 AP executions while 
the PRT was set to 0.1 and the separate SOMA run was 
performed for all of them to set their Kn value. Without 
the adaptive PRT, AP was able to find an optimal ANN 
in only 1 case in comparison with 4 successful cases in 
the original experiment.

Conclusion
ANN synthesis already recorded several successful 
application considering practical casers of modelling and 
simulation [6] – [9]. It was also applied on large set of 
widely recognized benchmark functions [10], [11] with 
respect to the function approximation, prediction and 
problems. This results vindicate efforts for its further 
development.

Obtained results of experiment considered in this 
paper proves an ability of proposed adaptive control to 
further improve ANN synthesis. It can significantly 
improve ANN synthesis ability to overshadow concurrent 
method of ANN optimization as are [12] – [17]. 

The method of adaptive individual handling proved in 
this paper are going to be applied on a practical industrial 
example and comparison of the improved ANN synthesis 
is to be subjected by a future study.
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