
* Corresponding author: varacha@fai.utb.cz

Adaptive Control of Neural Network Synthesis

Pavel Vařacha1
1Tomas Bata University in Zlín, Faculty of Applied Informatics, Zlín, Czech Republic

Abstract. Neural Network Synthesis is a method based on based on Analytic Programming and
asynchronous implementation of Self-Organising Migration Algorithm. This synthesis woks as an algorithm
capable of creating and learning and artificial neural networks as well as optimizing their structures and
connections. This paper introduce an idea of adaptive control of Self-Organising Migration Algorithm based
on complexity of processed neural network structure. Such approach already recorded several successful
application in modelling and simulation.

1. Introduction

Neural Network Synthesis (ANN synthesis) is an
algorithm capable of creating and learning and artificial
neural networks as well as optimizing their structures and
connections. To describe this method in all details would
significantly exceed a possible extend of this paper.
Nevertheless ANN synthesis mechanisms are very well
elaborated in papers [1] and [2]. An interested reader is
respectfully asked to study this previous publications as
are referred at the end of the paper.

ANN synthesis is based on Analytic Programming (AP)
and asynchronous implementation of Self-Organizing
Migration Algorithm (SOMA). Important facts about AP
which are necessary for basic understanding of an idea
proposed in the paper as an adaptive individual handling
are described in chapters 2. And 3. For better
understanding of SOMA, please, refer paper [3] or [4].

This paper explores a possibility to make it more
effective by adaptive control of SOMA parameters. The
main idea is an intelligent control of the ANN synthesis
based on complexity of processed neural network
structure.

2. Analytic Programming
The main principle (core) of AP is based on a discrete set

handling (DSH) (Fig. 1). DSH shows itself as a universal

interface between the EA and the symbolically solved

problem. This is why AP can be used almost by any

evolutionary algorithm. In the case of ANN synthesis the

algorithm is SOMA.

Figure 1. DSH principle

Briefly stated, in AP, individuals consist of non-

numerical expressions (operators, functions,…) which are

represented within the evolutionary process by their

integer indexes. Each index then serves as a pointer into

the set of expressions and AP uses it to synthesize the

resulting function-program for the Cost Function

evaluation.
=All simple functions and operators are in the so called

General Function Set (GFS) divided into groups

according to the number of arguments which can be

inserted during the evolutionary process to create subsets

GFS3, GFS2...GFS0.
Table 1. Example of GFS and its subsets
GFS Degree Contains

GFSall f(x1, x2, x3), +, -, *, /, Power, Abs, Round,
Sin, Cos, t, K, τ, 1, 2

GFS3 f(x1, x2, x3)
GFS2 +, -, *, /, Power
GFS1 Abs, Round, Sin, Cos
GFS0 t, K, τ, 1, 2

�

DOI: 10.1051/, 02061 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2061

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Figure 2. GFS subsets hierarchy

The functionality of AP can be seen in the specific
example in Fig. 3:

Figure.3. Main principles of AP

The individual consists of 6 arguments (indices,
pointers to GFS). The first index is 3, meaning that it is
taken from the set of functions GFSall. The function
minus has two arguments; therefore indexes 7 and 9 are
arguments of minus.

6 + 7 (1)
Index 7 is then replaced by Abs and index 9 by Sin.

Abs + Sin (2)
Abs and Sin are one-argument functions. Then, index 9
follows index 11, which is replaced by t.

Abs(t) + Sin (3)
Sin is also a one-argument function. Then, after index 11,
the individual takes index 9, which is replaced by Sin and
this Sin becomes an argument of the previous Sin.

Sin(Tan) + Sin(Sin((4)
The last index is 2, but in this case there is the function
Plus. Plus needs two arguments to work properly. AP
will not allow this, as there is not any other free pointer to
be used as the argument. Instead of Plus, AP will jump
into the subspace, in this case directly to the GFS0arg. In
the GFS0arg it finds the second element, which is K. And
by doing so, we get (5).

Abs(t) + Sin(Sin(K)) (5)
The number of pointers actually used from an

individual before the synthesized expression is closed is
called depth. This example is based on the relevant and
previously published work in.

3. Neural Network Synthesis
The previous chapter described basic concepts of AP.

Such concepts can be easily employed to synthetize

different ANN structures as can be seen from Fig. 4. This
process of structural synthesis as well as ANN learning is
well described for example in [3] and [4].

Figure 4. An Example of ANN synthesis

4. Experiment Designed for Adaptive
Control
Processes described in chapters 2. and 3. have to be
optimized by a specific evolutionary algorithms. In case
of ANN synthesis it basically means to try variously
complex ANN structures (individuals in AP) to improve
them in evolutionary way. In place of such evolutionary
algorithm ANN synthesis commonly employ SOMA. An
algorithm which is well described in [3] and [4].
However SOMA is not anyhow adaptive to coop with
various lengths of individuals in AP. SOMA simply treat
all such individuals as an individual of constant length
(typically 100). For this paper one control parameter of
SOMA was chosen to improve this behavior.

An adaptive control proposed in this paper aim to
influence control parameter of SOMA named PRT to
improve its ability to deal with different lengths of
individuals. For each individual SOMA will used
different setting of PRT bases on length of a solved
individual itself.

Commonly, SOMA is set on PRT = 0.1. In
contradiction this paper proposes adaptive strategy so
PRT will differ from individual to individual PRT = 1 /
depth.

In order to statistically evaluate this new adaptive
handling approach the function approximation problem
was chosen as an aim of the experiment. The function (6)
proposed by [5] as an appropriate approximation
benchmark was chosen to be approximated by the ANN.

y = xi
5– 2 xi

3
+ xi

where xi is in <-1,by the step 0.04 ,1>

(6)

Fig. 5 (automatically generated by ANN synthesis
software) shows an example of synthetized ANN
approximating (6). The difference between the ANN and

�

DOI: 10.1051/, 02061 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2061

2

(7) is depicted as a red area which could be minimized by
the process of synthesis. An goal of ANN synthesis in
this case can be simply described as founding smallest
possible ANN able to approximate given function.
Simplicity of such function is purely purposeful here as
the main goal is not test ability of ANN synthesis to solve
complicated tasks but to test how the method improve
while applying proposed adaptive strategy.

Figure 5. Approximation of (7) by synthetized ANN

AP was executed 100 times (physically on 8 cores of
the Super Micro Server) to produce an ANN with the
RMSD < 0.005. The main intention was to find such an
ANN which met this condition and which simultaneously
used as few AN as possible. All SOMA’s control
parameters required for repetition of this experiment are
described in following tables. The setting of
Asynchronous SOMA used as the EA for AP can be seen
in Table 1. and SOMA setting used for ANN learning in
Table 2.

Table 1. Setting of SOMA used as EA for AP

Number of Individuals 48
Individual Parameters 100

Low 0
High 3

PathLength 3
Step 0,11
PRT Based on experiment

Divergence 0.01
Period 1

Table 2. Setting of SOMA used to optimize Kn

Number of Individuals number ofKn* 0.5 (at least 10)
Individual Parameters 100

Low -10
High 10

PathLength 3
Step 0,11
PRT 1/Kn

Divergence 0.01
Period 6

Based on experiment setting PRT which SOMA used
to optimize Kn is set either conservatively to PRT = 0.1
or adaptively PRT = 1 / depth.

5. Results
The control of SOMA parameters consists in replacement
of the static PRT value by the value which inversely
depends on depth of a currently operated individual.

Table 3. Static PRT vs. adaptive control
PRT = 1/ depth PRT = 0.1

Average time
needed for synthesis

194 s 373s

Average number of
used AN

9 13

A total of 1,189,870 evaluations of AP individual
fitness were completed during 100 AP executions while
the PRT was set to 0.1 and the separate SOMA run was
performed for all of them to set their Kn value. Without
the adaptive PRT, AP was able to find an optimal ANN
in only 1 case in comparison with 4 successful cases in
the original experiment.

Conclusion
ANN synthesis already recorded several successful
application considering practical casers of modelling and
simulation [6] – [9]. It was also applied on large set of
widely recognized benchmark functions [10], [11] with
respect to the function approximation, prediction and
problems. This results vindicate efforts for its further
development.

Obtained results of experiment considered in this
paper proves an ability of proposed adaptive control to
further improve ANN synthesis. It can significantly
improve ANN synthesis ability to overshadow concurrent
method of ANN optimization as are [12] – [17].

The method of adaptive individual handling proved in
this paper are going to be applied on a practical industrial
example and comparison of the improved ANN synthesis
is to be subjected by a future study.

Acknowledgements
This work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic within the
National Sustainability Programme project No. LO1303
(MSMT-7778/2014).

�

DOI: 10.1051/, 02061 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2061

3

References
1. Zelinka I., Vařacha P., Oplatková Z., Volná, E.

Structural Synthesis of Neural Network by Means of

Analytic Programmig. In 12th International
Conference on Soft Computing. Czech Republic, VUT
Brno, p. 25-30 (2006)

2. Vařacha P. Neural Network Synthesis Dealing with
Classification Problem. In Recent Researches in
Automatic Control. Montreux : WSEAS Press, p. 377-
382 (2011)

3. Šenkerik R., Zelinka I., Davendra D., Oplatkova Z.
Utilization of SOMA and differential evolution for

robust stabilization of chaotic Logistic equation,
Computers & Mathematics with Applications, Volume
60, Issue 4, Pages 1026-1037, ISSN 0898-1221, doi
10.1016/j.camwa.2010.03.059. (2010)

4. Šenkeřík R. Oplatkova Z., Zelinka I, Davendra D.,
Synthesis of feedback controller for three selected

chaotic systems by means of evolutionary techniques:

Analytic programming, Mathematical and Computer
Modelling, ISSN 0895-7177,
10.1016/j.mcm.2011.05.030 (Available online 27 May
2011)

5. Vařacha P., Zelinka I. Analytic Programming Powered
by Distributed Self-Organizing Migrating Algorithm

Application. In IEEE Proceedings 7th International
Conference Computer Information Systems and
Industrial Management Applications. Ostrava : IEEE
Computer Society, p. 99-100 (2008)

6. Prechelt L., Proben1—A Set of Neural Network

Benchmark Problems and Benchmarking Rules,
Universität Karlsruhe, Germany (1994)

7. Mangarianm O.L., Wolberg W.H., Cancer diagnosis
via linear programming, SIAM News, Volume 23,
Number 5, , p. 1-18 (1990)

8. Král E., Dolinay V., Vašek L., Vařacha P. Usage of
PSO Algorithm for Parameters Identification of

District Heating Network Simulation Model. In 14th
WSEAS International Conference on Systems. Latest
Trands on Systems.Volume II, Rhodes, WSEAS Press
(GR) . p. 657-659 (2010)

9. CHRAMCOV, Bronislav. Identification of time series
model of heat demand using Mathematica

environment. In Recent Researches in Automatic
Control. Montreux : WSEAS Press, s. 346-351 (2011)

10. Zelinka I., Studies in Fuzziness and Soft Computing,
New York : Springer-Verlag, (2004)

11. Koza J. R., Genetic Programming, MIT Press, ISBN
0-262-11189-6 (1998)

12. Jui-Yu W., MIMO CMAC neural network classifier

for solving classification problems, Applied Soft
Computing, Volume 11, Issue 2, The Impact of Soft
Computing for the Progress of Artificial Intelligence,
p. 2326-2333 (2011)

13. Falco D.I., Cioppa E., Tarantino, Discovering

interesting classification rules with genetic
programming, Applied Soft Computing 1, p. 257–269
(2002)

14. Brameier M., Banzhaf W., A comparison of linear
genetic programming and neural networks in medical

data mining, IEEE Transactions on Evolutionary

15. Turner et al., Grammatical Evolution of Neural
Networks for Discovering Epistasis among

Quantitative Trait Loci Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics

Book Series Title: Lecture Notes in Computer Science
Publisher: Springer Berlin / Heidelberg, p: 86 – 97
(2010)

16. Vonk E., Jain L.C., Johnson R.P., Automatic

Generation of Neural Network Architecture Using

Evolutionary Computation, Advances in Fuzzy
Systems – Applications and Theory, Volume 14,
World Science, ISBN: 981-02-3106-7 (1997)

17. Koza J. R. et al. Genetic Programming III; Darwinian
Invention and problem Solving, Morgan Kaufmann
Publisher, (1999)

�

DOI: 10.1051/, 02061 (2017) 712501MATEC Web of Conferences 25 matecconf/201
CSCC 2017

2061

4

