

Real-Time Fire Detection in Camera Stream Using Statistical Analysis

KARE KOPLÍK, PETER JANKŮ, OLGA VOZNIUK, TOMÁŠ DULÍK, PETR SNOPEK
Faculty of applied informatics
Tomas Bata University in Zlin

Nad Stranemi 4511, 760 05 Zlin,
CZECH REPUBLIC

janku@fai.utb.cz http://www.utb.cz/fai

Abstract: - The paper describes a new algorithm designed to be fast and efficient for detecting fire. It is based
on finding and investigating suspicious regions in each frame of video stream. The investigation consists of
tracking regions across frames and performing statistical analysis on their trajectory.
If the trajectory has characteristic similar to fire, a test on persistence is performed. If the fire-like
characteristics persists, the alarm is triggered. This criterion enables to eliminate a large proportion of false
alarms. Given it’s simplicity, the algorithm can be used separately in some environments and can improve
existing algorithms as well.

Key-Words: - Fire detection. Statistical analysis. Digital signal processing

1 Introduction
In this paper, we present new, innovative and simple
algorithm for detecting fire in video stream eg. from
a camera. It can be used as a standalone algorithm
and it can also improve more complex algorithms by
adding more certainty to final decision.

Its main advantage is it performs well
without demanding too much computational power
and when added to existing algorithm, it can work
with data already produced in initial steps.

Most algorithms detect suspicious regions
and then investigate them for farther fire-like
characteristics. Our algorithm is based on tracking
these regions in time and statistically analysing their
trajectory.
Our goal was to develop a fast algorithm which
would run on a relatively affordable hardware with
minimum false alarm ratio.

Similarly to other researchers before us, we
attempt to follow the idea that systems solely based
on processing signals from sensors are outdated and
need to be replaced with much more effective and
reliable computer-vision based solution.

Sensors have their limitations. They cannot
work outside. They need to be relatively close to fire
and there has to be multiple of them to cover all
potentially dangerous places.

Cameras can monitor much larger areas and
the respective systems can make final decision with
more certainty. It is therefore desirable to build a
system which can redefine the existing standard.

2 Detailed description

The entire algorithm is very simple. It consists of
the following steps:

1. Detect suspicious regions
2. Find bounding rectangles
3. Track rectangles in time
4. Analyse trajectories
5. Check for persistence

In the following sections we will look at each

step. To demonstrate, let’s use a video of a burning
tree as an example.

2.1 Detecting suspicious regions
The regions of interest in this case would be the
pixels which have fire-like colour (PC) and also
pixels which change visibly in time (i.e. contain
movement; PM). Suspicious pixels (PS) are then an
intersection of these two sets:

(1) 𝑃𝑃𝑆𝑆 = 𝑃𝑃𝐶𝐶 ∩ 𝑃𝑃𝑀𝑀

2.1.1 Detecting pixels with fire-like colour
Finding pixels based on colour is very simple and it
can be done using different colour models like
RGB, YUV, YCbCr HSI or HSV. [1][6][8] The first
two focus on colour spectrum and the latter two on
colour intensity. Fire is usually the brightest part in
the video so using brightness as an additional
criterion is very useful.

In our algorithm we work with RGB colour
model and the procedure looks like this: We take
red (R), green (G), and blue (B) channels and
calculate colour saturation (S). The rules describe by

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 387 Volume 13, 2017

equation 2 are applied. If the result of this rules is
true than the pixel belongs to the Pc set.

(2) R > G > B
S > Sr

Fig. 1 Burning tree

Fig. 2 Fire colour map

2.1.2 Detecting movement
We need three frames to detect movement. Because
we need the previous, current and next frame, the
algorithm is always one frame behind a real-time
stream (e.g. a camera) input.

We need to convert all frames to greyscale
so we can then simply subtract the background to
detect any motion in the foreground.

First we calculate an absolute difference
between previous (fi-1) and next (fi+1) frame. This
will subtract the background. Then we calculate an
absolute difference between current (fi) and the next
frame. This will update that information. Then we
apply binary AND operator on the two calculated
differences to obtain information about the
movement in the foreground.

(3) |𝑓𝑓𝑖𝑖−1 − 𝑓𝑓𝑖𝑖+1| ∧ |𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖+1|

It is also necessary to filter out lone pixels (i.e.
noise) in the resulting movement map. The amount
of noise depends on the camera and lighting
conditions.

Fig. 3 Movement map

Fig. 4 Suspicious areas

2.2 Finding bounding rectangles
The binary map of suspicious pixels will most likely
consist of lots of small disconnected areas
concentrating in separated larger regions. At first,
we tried to find bounding rectangles for each of
them. This turned out to be very costly in terms of
processing time. The solution was to dilate the small
areas using a morphology operator.

Dilatation (as a morphological operation)
consists of convoluting an image with a small kernel
shaped like a simple shape (circle, square, etc.).

This results into much fewer bounding
rectangles to be found and aggregated in the next
step and significantly increases the algorithm speed.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 388 Volume 13, 2017

2.3 Tracking suspicious regions in time
Similarly to [7] we test suspicious regions’ fire-like
characteristic in time. Our method consists of
tracking. Before we start we need to aggregate
found areas in space and then link them in time.
As it turned out, this was initially easier said than
done. If we simply find bounding rectangles for
small disconnected areas (as seen in Fig. 4) we get
lots of small bounding rectangles inside the actual
fire region.
We also cannot use the fire-colour map or the
movement map (Fig. 2 and 3) (despite these being
more dense) because they cover regions of both fire
and fire-like background in a way that they very
often merge into one inseparable mixed region.
Another problem is, the map of suspicious pixels
tends to change very rapidly between two frames. If
we simply connect small areas which are close to
each other (applying some tolerance constant), the
result will be very unstable in time. The bounding
rectangles would keep changing to a multiple (or
small fraction) of their previous size. It would also
split into several small rectangles then merge into
fewer large ones. If we set the tolerance constant
higher to make sure we get one rectangle covering
the whole fire region we increase the error in more
complex videos with more than one fire region.
The solution to all these problems was to stop
connecting suspicious areas in each frame (i.e. in
space) individually and then look for overlaps
across frames (i.e. in time) and start connecting
them both in space and time in one slightly more
sophisticated process.
Our algorithm involves a tree data structure
consisting of two layers of bounding rectangles. We
describe it in more detail in the following
subsections.

2.3.1 Aggregating regions in space
In the first frame we add rectangles to the root of the
tree. If a rectangle to be added overlaps (with added
tolerance) any first-layer rectangle, they are merged
into a new rectangle which is the smallest rectangle
containing all of them and they are added as its
children (i.e. they are added to the second layer of
the tree).

If they already have children, their children
are moved to the new parent and the original parent
is discarded (i.e. the third-layer rectangles are
always pushed to the second layer, replacing the
second-layer parent). Example tree structure can be
seen at Fig. 5.

Once all the rectangles have been added to
the tree, we check each first-layer rectangle if it has
any children.

If it has, we find the smallest bounding
rectangle for all children and resize the parent
accordingly. Then we remove the children from the
second layer.

Fig. 5 Example tree structure

For better understanding, please look at Fig.

6. The child rectangles are drawn with thin, full,
black line. If they overlap (with added tolerance
depicted with thin, dashed, gray line), they are
added to the same parent. The parent’s rectangle is
then the smallest bounding rectangle (thick, full,
green line).

Fig. 6 First frame parent rectangle

2.3.2 Linking regions in time
In all of the following frames we continue same as
with the first frame only now we have preexisting
first-layer and from now on we will resize the
parent to the average of its final size in the previous
frame and the smallest bounding rectangle
calculated for the current frame.

It will look like as shown at Fig. 7. Despite
the small rectangles not overlapping, we know they
belong to the same fire region because they are
inside the bounding rectangle from the previous

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 389 Volume 13, 2017

frame (drawn with thick, dashed, light green line).
The minimal bounding rectangle (thick, full, light
green line) and the previous size will give us the
new parent size (thick, full, green line) by
calculating their average.

Fig. 7 Resizing parent rectangle

If the parent ends up with no children, we

reduce its RTL (right to live) parameter. If it has at
least one child, we will set RTL to predefined
maximum value.

The RTL parameter basically tells us how
long will we keep a rectangle which has not been
updated (e.g. for 3 frames).

2.3.3 Tracking regions in time
The tracking is based on keeping a history of middle
points. These are not the centre points of bounding
rectangles. Instead, we take the original map of
suspicious regions (without applied dilatation) and
average the coordinates of suspicious pixels. The
new new average point is then added to a stack.

The reason we use the stack structure is that
we remove points if their count surpasses defined
limit (the points are no longer needed for analysis).

Fig. 8 Suspicious region’s trajectory

2.4 Analysing trajectories

This and the following step are very important.
Without them, we would be detecting a large
spectrum of objects and features which are similar
to fire in colour and in movement characteristics.

The fire has a very specific way of moving.
First of all, it stays in one place and is distinct by
constant flickering. This is very useful because it’s
hard to find anything else what is (yellow and bright
and) constantly changing shape while staying in one
location. The trajectory of the middle points should
basically fit the normal distribution.

To test this with our suspicious regions, we
use horizontal and vertical coordinates of the middle
points. First we calculate the mean value μ and the
standard deviation σ for each axis. If the distribution
is normal, according to the gaussian curve (Fig. 9),
68.2% of values should belong to the interval:

(4) (𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎)

Since we work with object that doesn’t only

change shape but also size over time, it is not wise
to rely on too many values to increase precision.
Instead, we work with fewer values (according to
our tests, the optimal number seems to be around
100) and expect some reasonable error. That is why
we had settled to expecting 60% of data to fall into
the above specified interval.

Fig. 9 Gaussian curve

2.4 Checking for persistance
To further eliminate false alarms, we apply one
more criterion: persistence. If the previous step
gives us positive result, we don’t trigger the alarm
yet but save it. This we do for each frame.
According video source we can then set the
persistence limit to be at least 15 seconds (which
would be 375 frames for 25 fps video source) or
even more. It is not recommended to set this limit to
be less than that. On the other hand, higher limit will
result in longer delay. (It will also increase the
relatively small chance the delay will surpass the
limit in case the criterion fails, i.e. false negative.)
To evaluate persistence, we don’t require the
positive test on normal distribution in each frame
but it has to be in defined higher percentage of

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 390 Volume 13, 2017

frames. Empirically, we had set it to be the top
quarter.

Fig. 10 Output screen

3 Algorithm parameters
There are several parameters which need to be set
after a camera providing video stream for our
algorithm is installed into a new environment.

3.1 Brightness threshold
Defines the minimum brightness needed for
classifying pixels as fire-coloured. Normally the
best value would be around 225 (out of 255) but in
some test videos it had to be adjusted because the
fire was too dark due to the type of video source.

3.2 Movement threshold
During the movement detection processing the camera
noise is reduced by filtering out some lone pixels. This
parameter sets the threshold. Usually in badly lit areas the
threshold needs to be set higher. This is important
because noise has normal distribution so it could cause a
false alarm.

3.3 Small regions gap size
Maximum distance between two small regions’
bounding rectangles which can be aggregated. This
parameter should have a small value (e.g. 10 px)
and depends on video resolution.

3.4 Regions minimal size
If there are too many very small regions found
because of camera noise, we eliminated them by
setting a minimal bounding rectangle size. If the
size is set too high, small flames will not be
detected. If it’s too low, the noise can trigger false
alarm.

3.5 Region’s right to live
As was explained in the previous chapter, this
parameter sets how long will we keep a region
appeared to be empty in a few frames.

This mostly happens when there is no movement
detected. Since the fire has multiple independently
moving flames it can be expected with high
probability it will not stop moving for more than
few (e.g. 3) frames.

3.6 Number of middle points
The parameter defines how many middle points we
want to remember for each region before we test
them for normal distribution. It should be enough
for this criterion to be calculated relatively
accurately but also not too many so we adapt to
changes in the scene quickly. We use empiric value
100.

3.7 Persistency interval
Number of frames for which the positive detection
has to persist before triggering the alarm. This
parameter needs to be changed according to number
of frames per second in each video stream.

The higher this number is the harder it is to
fool the algorithm but also the longer delay we get.
Fire keeps its characteristic movement all the time,
but most other object and phenomena moves
chaotically and in short intervals. In our tests, 15
seconds turned out to be sufficient minimal length.
4 Practical tests
We had acquired around 60 videos recorded with a
static camera. One third were videos with fire, next
third were videos containing random movement
(e.g. people, cars, birds) and the last were videos
which we thought could prove problematic given
the way the algorithm works. All the videos were
chosen with the potential algorithm installation
environment in mind.

First two categories run without a problem.
In case of fire-less videos, the final criterion, the
persistency, was 0 at all times. The fire-containing
videos had persistency mostly above the alarm-
triggering threshold (75%) and were only delayed
by the minimal trajectory length requirement (15s)
(see Fig. 11).

Fig. 11 Persistency criterion for video “Fireplace02”

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 391 Volume 13, 2017

The third category was interesting. There
were three major problems. One was, if the video
contained lots of moving objects (e.g. cars on a busy
road at night, brightly dressed dancers on a stage),
the normal-distribution criterion would pass very
often. In this case, the alarm would not be triggered,
because of the persistency criterion, which requires
the movement to be almost constant (see Fig. 12).

Fig. 12 Persistency criterion for video “Cars03”

Second problem were random movements, which
passed the persistency criterion from time to time, if
the footage was long enough (see Fig. 13). Of
course, this problem can be solved by making the
persistency interval longer.

Fig. 12 Persistency criterion for video “Street”

The worst problem is the third one. It happens when
all the criteria are passed even when there is no fire.
It didn’t occur very often and in some cases, it was
possible to eliminate it by reducing noise threshold
in the movement criterion or increasing brightness
threshold in the colour criterion. However, there
were situations, where the algorithm simply failed.
One example is a video of sunset over ocean
surface. This natural phenomena just looked very
similar to fire.

5 Performance

To test our algorithm, we had acquired several
videos containing flames, moving bright objects and
phenomena similar to fire.

5.1 Algorithm speed
Our algorithm is very simple so when optimized, it
could run in real time on average hardware. It
doesn’t rely on frequency of fire flickering unlike
some algorithms so the frame rate doesn’t have to
be that high either.

If we ask how fast can our algorithm detect
flame it really depends on the camera setting and
scene characteristics but in ideal conditions it
depends solely on the defined length of the minimal
persistence interval.

Not ideal conditions would be e.g. the flame
is too small or too far from the camera, the flame is
not fully visible in camera’s field of view or the
flame movement is being distorted by another
moving object (in one test video it was a burning
piece of wire rolling out of flames).

5.1 Strengths and weaknesses
Similarly to other fire-detecting algorithms the most
concerning weakness is false alarm ratio and
avoiding it relies on combining multiple criteria
[2][3][4][5]. If all criteria are fooled, the false alarm
occurs.

What was very problematic was white
background in some videos. Anything what moves
in front of such background can pass the movement-
and-brightness criterion because even when the
object is not bright the algorithm sees only bright
areas changing shape as the object covers and
uncovers the background.

Other concern we have is with natural
phenomena similar to fire. When testing the
algorithm on videos of sunset being reflected on
moderately moving ocean surface, the false alarm
was triggered every time.

Other than that, our algorithm proved to
work without major problems and was almost
impossible to fool intentionally when processing
real time camera input.

6 Conclusion
We had developed and successfully tested a new
algorithm. In this stage in can be used with any
camera system and will work mostly without error.
However, there are certain situations in which the
algorithm triggers false alarm. This will be the
subject of our future research.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 392 Volume 13, 2017

7 Acknowledgement
This paper is supported by Technology Agency of
the Czech Republic (TA ČR) within the Visual
Computing Competence Center - V3C project No.
TE01020415, by Ministry of Education, Youth and
Sports of the Czech Republic within the National
Sustainability Programme project No. LO1303
(MSMT-7778/2014) and also by the European
Regional Development Fund under the project
CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

References:
[1] T. Chen, P. Wu, and Y. Chiou, “An Early Fire-

Detection Method Based on Image
Processing,” Proc. IEEE Int. Image Process.,
2004, pp. 1707-1710.

[2] B.U. Toreyin, Y. Dedeoglu, and A.E. Cetin,
“Flame Detection in Video Using Hidden
Markov Models,” Proc. IEEE Int. Conf. Image
Process., 2005, pp. 1230-1233, 2005.

[3] W. Krüll et al., “Design and Test Methods for
a Video-Based Cargo Fire Verification System
for Commercial Aircraft,” Fire Safety J., vol.
41, no. 4, 2006, pp. 290-300.

[4] Turgay Celik, "Fast and Efficient Method for
Fire Detection Using Image Processing," ETRI
Journal, vol. 32, no. 6, Dec. 2010, pp. 881-890.

[5] Liu, Zhigang, George Hadjisophocleous,
Guofeng Ding and Choon Siong Lim. Study of
a Video Image Fire Detection System for
Protection of Large Industrial Applications and
Atria [online]. [cit. 2013-12-01].

[6] Poobalan, Kumarguru and Liew, Siau-Chuin.
Fire Detection Algorithm using Image
Processing Techniques. In: E-Proceeding of the
3rd International Conference on Artificial
Intelligence and Computer Science
(AICS2015), 12-13 October 2015 , BayView
Hotel, Penang, Malaysia. pp. 160-168.. ISBN
978-967-0792-06-4.

[7] Jiang, B., Lu, Y., Li, X. et al. Multimed Tools
Appl (2015) 74: 689. doi:10.1007/s11042-014-
2106-z.

[8] A. E. Gunawaardena, R. M. M. Ruwanthika, A.
G. B. P. Jayasekara, "Computer Vision Based
Fire Alarming System", in Proceedings of the
2nd International Moratuwa Engineering
Research Conference (MERCon), pp. 325-330,
Moratuwa, Sri Lanka, April 2016.

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Kare Koplík, Peter Janků,

Olga Vozniuk, Tomáš Dulík, Petr Snopek

E-ISSN: 2224-3496 393 Volume 13, 2017

