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Abstract: - The paper describes a new algorithm designed to be fast and efficient for detecting fire. It is based 
on finding and investigating suspicious regions in each frame of video stream. The investigation consists of 
tracking regions across frames and performing statistical analysis on their trajectory. 
If the trajectory has characteristic similar to fire, a test on persistence is performed. If the fire-like 
characteristics persists, the alarm is triggered. This criterion enables to eliminate a large proportion of false 
alarms. Given it’s simplicity, the algorithm can be used separately in some environments and can improve 
existing algorithms as well. 
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1 Introduction 
In this paper, we present new, innovative and simple 
algorithm for detecting fire in video stream eg. from 
a camera. It can be used as a standalone algorithm 
and it can also improve more complex algorithms by 
adding more certainty to final decision. 

Its main advantage is it performs well 
without demanding too much computational power 
and when added to existing algorithm, it can work 
with data already produced in initial steps. 

Most algorithms detect suspicious regions 
and then investigate them for farther fire-like 
characteristics. Our algorithm is based on tracking 
these regions in time and statistically analysing their 
trajectory. 
Our goal was to develop a fast algorithm which 
would run on a relatively affordable hardware with 
minimum false alarm ratio. 

Similarly to other researchers before us, we 
attempt to follow the idea that systems solely based 
on processing signals from sensors are outdated and 
need to be replaced with much more effective and 
reliable computer-vision based solution. 

Sensors have their limitations. They cannot 
work outside. They need to be relatively close to fire 
and there has to be multiple of them to cover all 
potentially dangerous places. 

Cameras can monitor much larger areas and 
the respective systems can make final decision with 
more certainty. It is therefore desirable to build a 
system which can redefine the existing standard. 

 
2 Detailed description 

The entire algorithm is very simple. It consists of 
the following steps: 
 

1. Detect suspicious regions 
2. Find bounding rectangles 
3. Track rectangles in time 
4. Analyse trajectories 
5. Check for persistence 

 
In the following sections we will look at each 

step. To demonstrate, let’s use a video of a burning 
tree as an example. 

 
2.1 Detecting suspicious regions 
The regions of interest in this case would be the 
pixels which have fire-like colour (PC) and also 
pixels which change visibly in time (i.e. contain 
movement; PM). Suspicious pixels (PS) are then an 
intersection of these two sets: 
 
(1) 𝑃𝑃𝑆𝑆 = 𝑃𝑃𝐶𝐶 ∩ 𝑃𝑃𝑀𝑀  
 
2.1.1 Detecting pixels with fire-like colour  
Finding pixels based on colour is very simple and it 
can be done using different colour models like 
RGB, YUV, YCbCr HSI or HSV. [1][6][8] The first 
two focus on colour spectrum and the latter two on 
colour intensity. Fire is usually the brightest part in 
the video so using brightness as an additional 
criterion is very useful. 

In our algorithm we work with RGB colour 
model and the procedure looks like this: We take 
red (R), green (G), and blue (B) channels and 
calculate colour saturation (S). The rules describe by 
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equation 2 are applied. If the result of this rules is 
true than the pixel belongs to the Pc  set. 
 

(2) R > G > B 
S > Sr 

 

 
Fig. 1 Burning tree 

 

 
Fig. 2 Fire colour map 

 
 
2.1.2 Detecting movement  
We need three frames to detect movement. Because 
we need the previous, current and next frame, the 
algorithm is always one frame behind a real-time 
stream (e.g. a camera) input. 

We need to convert all frames to greyscale 
so we can then simply subtract the background to 
detect any motion in the foreground. 

First we calculate an absolute difference 
between previous (fi-1) and next (fi+1) frame. This 
will subtract the background. Then we calculate an 
absolute difference between current (fi) and the next 
frame. This will update that information. Then we 
apply binary AND operator on the two calculated 
differences to obtain information about the 
movement in the foreground. 

 
(3) |𝑓𝑓𝑖𝑖−1 − 𝑓𝑓𝑖𝑖+1| ∧ |𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑖𝑖+1| 
 
It is also necessary to filter out lone pixels (i.e. 
noise) in the resulting movement map. The amount 
of noise depends on the camera and lighting 
conditions. 
 

 
Fig. 3 Movement map 

 

 
Fig. 4 Suspicious areas 

 
 
2.2 Finding bounding rectangles 
The binary map of suspicious pixels will most likely 
consist of lots of small disconnected areas 
concentrating in separated larger regions. At first, 
we tried to find bounding rectangles for each of 
them. This turned out to be very costly in terms of 
processing time. The solution was to dilate the small 
areas using a morphology operator. 

Dilatation (as a morphological operation) 
consists of convoluting an image with a small kernel 
shaped like a simple shape (circle, square, etc.). 

This results into much fewer bounding 
rectangles to be found and aggregated in the next 
step and significantly increases the algorithm speed. 
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2.3 Tracking suspicious regions in time 
Similarly to [7] we test suspicious regions’ fire-like 
characteristic in time. Our method consists of 
tracking. Before we start we need to aggregate 
found areas in space and then link them in time. 
As it turned out, this was initially easier said than 
done. If we simply find bounding rectangles for 
small disconnected areas (as seen in Fig. 4) we get 
lots of small bounding rectangles inside the actual 
fire region. 
We also cannot use the fire-colour map or the 
movement map (Fig. 2 and 3) (despite these being 
more dense) because they cover regions of both fire 
and fire-like background  in a way that they very 
often merge into one inseparable mixed region. 
Another problem is, the map of suspicious pixels 
tends to change very rapidly between two frames. If 
we simply connect small areas which are close to 
each other (applying some tolerance constant), the 
result will be very unstable in time. The bounding 
rectangles would keep changing to a multiple (or 
small fraction) of their previous size. It would also 
split into several small rectangles then merge into 
fewer large ones. If we set the tolerance constant 
higher to make sure we get one rectangle covering 
the whole fire region we increase the error in more 
complex videos with more than one fire region. 
The solution to all these problems was to stop 
connecting suspicious areas in each frame (i.e. in 
space) individually and then look for overlaps 
across frames (i.e. in time) and start connecting 
them both in space and time in one slightly more 
sophisticated process. 
Our algorithm involves a tree data structure 
consisting of two layers of bounding rectangles. We 
describe it in more detail in the following 
subsections. 
 
2.3.1 Aggregating regions in space  
In the first frame we add rectangles to the root of the 
tree. If a rectangle to be added overlaps (with added 
tolerance) any first-layer rectangle, they are merged 
into a new rectangle which is the smallest rectangle 
containing all of them and they are added as its 
children (i.e. they are added to the second layer of 
the tree). 

If they already have children, their children 
are moved to the new parent and the original parent 
is discarded (i.e. the third-layer rectangles are 
always pushed to the second layer, replacing the 
second-layer parent). Example tree structure can be 
seen at Fig. 5. 

Once all the rectangles have been added to 
the tree, we check each first-layer rectangle if it has 
any children. 

If it has, we find the smallest bounding 
rectangle for all children and resize the parent 
accordingly. Then we remove the children from the 
second layer. 
 

 
Fig. 5 Example tree structure 

 
For better understanding, please look at Fig. 

6. The child rectangles are drawn with thin, full, 
black line. If they overlap (with added tolerance 
depicted with thin, dashed, gray line), they are 
added to the same parent. The parent’s rectangle is 
then the smallest bounding rectangle (thick, full, 
green line). 

 

 
Fig. 6 First frame parent rectangle 

 
2.3.2 Linking regions in time 
In all of the following frames we continue same as 
with the first frame only now we have preexisting 
first-layer and  from now on we will resize the 
parent to the average of its final size in the previous 
frame and the smallest bounding rectangle 
calculated for the current frame. 

It will look like as shown at Fig. 7. Despite 
the small rectangles not overlapping, we know they 
belong to the same fire region because they are 
inside the bounding rectangle from the previous 
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frame (drawn with thick, dashed, light green line). 
The minimal bounding rectangle (thick, full, light 
green line) and the previous size will give us the 
new parent size (thick, full, green line) by 
calculating their average. 
 

 
Fig. 7 Resizing parent rectangle 

 
If the parent ends up with no children, we 

reduce its RTL (right to live) parameter. If it has at 
least one child, we will set RTL to predefined 
maximum value. 

The RTL parameter basically tells us how 
long will we keep a rectangle which has not been 
updated (e.g. for 3 frames). 

 
 

2.3.3 Tracking regions in time 
The tracking is based on keeping a history of middle 
points. These are not the centre points of bounding 
rectangles. Instead, we take the original map of 
suspicious regions (without applied dilatation) and 
average the coordinates of suspicious pixels. The 
new new average point is then added to a stack. 

The reason we use the stack structure is that 
we remove points if their count surpasses defined 
limit (the points are no longer needed for analysis). 
 

 
Fig. 8 Suspicious region’s trajectory 

 
2.4 Analysing trajectories 

This and the following step are very important. 
Without them, we would be detecting a large 
spectrum of objects and features which are similar 
to fire in colour and in movement characteristics. 

The fire has a very specific way of moving. 
First of all, it stays in one place and is distinct by 
constant flickering. This is very useful because it’s 
hard to find anything else what is (yellow and bright 
and) constantly changing shape while staying in one 
location. The trajectory of the middle points should 
basically fit the normal distribution. 

To test this with our suspicious regions, we 
use horizontal and vertical coordinates of the middle 
points. First we calculate the mean value μ and the 
standard deviation σ for each axis. If the distribution 
is normal, according to the gaussian curve (Fig. 9), 
68.2% of values should belong to the interval: 

 
(4) (𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎) 

 
Since we work with object that doesn’t only 

change shape but also size over time, it is not wise 
to rely on too many values to increase precision. 
Instead, we work with fewer values (according to 
our tests, the optimal number seems to be around 
100) and expect some reasonable error. That is why 
we had settled to expecting 60% of data to fall into 
the above specified interval. 
 

 
Fig. 9 Gaussian curve 

 
2.4 Checking for persistance 
To further eliminate false alarms, we apply one 
more criterion: persistence. If the previous step 
gives us positive result, we don’t trigger the alarm 
yet but save it. This we do for each frame. 
According video source we can then set the 
persistence limit to be at least 15 seconds (which 
would be 375 frames for 25 fps video source) or 
even more. It is not recommended to set this limit to 
be less than that. On the other hand, higher limit will 
result in longer delay. (It will also increase the 
relatively small chance the delay will surpass the 
limit in case the criterion fails, i.e. false negative.) 
To evaluate persistence, we don’t require the 
positive test on normal distribution in each frame 
but it has to be in defined higher percentage of 
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frames. Empirically, we had set it to be the top 
quarter. 
 

 
Fig. 10 Output screen 

 
 
3 Algorithm parameters 
There are several parameters which need to be set 
after a camera providing video stream for our 
algorithm is installed into a new environment. 
 
3.1 Brightness threshold 
Defines the minimum brightness needed for 
classifying pixels as fire-coloured. Normally the 
best value would be around 225 (out of 255) but in 
some test videos it had to be adjusted because the 
fire was too dark due to the type of video source. 
 
3.2 Movement threshold 
During the movement detection processing the camera 
noise is reduced by filtering out some lone pixels. This 
parameter sets the threshold. Usually in badly lit areas the 
threshold needs to be set higher. This is important 
because noise has normal distribution so it could cause a 
false alarm. 
 
3.3 Small regions gap size 
Maximum distance between two small regions’ 
bounding rectangles which can be aggregated. This 
parameter should have a small value (e.g. 10 px) 
and depends on video resolution. 
 
3.4 Regions minimal size 
If there are too many very small regions found 
because of camera noise, we eliminated them by 
setting a minimal bounding rectangle size. If the 
size is set too high, small flames will not be 
detected. If it’s too low, the noise can trigger false 
alarm. 
 
3.5 Region’s right to live 
As was explained in the previous chapter, this 
parameter sets how long will we keep a region 
appeared to be empty in a few frames. 

This mostly happens when there is no movement 
detected. Since the fire has multiple independently 
moving flames it can be expected with high 
probability it will not stop moving for more than 
few (e.g. 3) frames. 
 
3.6 Number of middle points 
The parameter defines how many middle points we 
want to remember for each region before we test 
them for normal distribution. It should be enough 
for this criterion to be calculated relatively 
accurately but also not too many so we adapt to 
changes in the scene quickly. We use empiric value 
100. 
 
3.7 Persistency interval 
Number of frames for which the positive detection 
has to persist before triggering the alarm. This 
parameter needs to be changed according to number 
of frames per second in each video stream. 

The higher this number is the harder it is to 
fool the algorithm but also the longer delay we get. 
Fire keeps its characteristic movement all the time, 
but most other object and phenomena moves 
chaotically and in short intervals. In our tests, 15 
seconds turned out to be sufficient minimal length. 
4 Practical tests 
We had acquired around 60 videos recorded with a 
static camera. One third were videos with fire, next 
third were videos containing random movement 
(e.g. people, cars, birds) and the last were videos 
which we thought could prove problematic given 
the way the algorithm works. All the videos were 
chosen with the potential algorithm installation 
environment in mind. 

First two categories run without a problem. 
In case of fire-less videos, the final criterion, the 
persistency, was 0 at all times. The fire-containing 
videos had persistency mostly above the alarm-
triggering threshold (75%) and were only delayed 
by the minimal trajectory length requirement (15s) 
(see Fig. 11). 

 

 
Fig. 11 Persistency criterion for video “Fireplace02” 
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The third category was interesting. There 
were three major problems. One was, if the video 
contained lots of moving objects (e.g. cars on a busy 
road at night, brightly dressed dancers on a stage), 
the normal-distribution criterion would pass very 
often. In this case, the alarm would not be triggered, 
because of the persistency criterion, which requires 
the movement to be almost constant (see Fig. 12). 

 
 

 
Fig. 12 Persistency criterion for video “Cars03” 

 
Second problem were random movements, which 
passed the persistency criterion from time to time, if 
the footage was long enough (see Fig. 13). Of 
course, this problem can be solved by making the 
persistency interval longer. 
 
 

 
Fig. 12 Persistency criterion for video “Street” 

 
The worst problem is the third one. It happens when 
all the criteria are passed even when there is no fire. 
It didn’t occur very often and in some cases, it was 
possible to eliminate it by reducing noise threshold 
in the movement criterion or increasing brightness 
threshold in the colour criterion. However, there 
were situations, where the algorithm simply failed. 
One example is a video of sunset over ocean 
surface. This natural phenomena just looked very 
similar to fire. 
 
5 Performance 

To test our algorithm, we had acquired several 
videos containing flames, moving bright objects and 
phenomena similar to fire. 
 
5.1 Algorithm speed 
Our algorithm is very simple so when optimized, it 
could run in real time on average hardware. It 
doesn’t rely on frequency of fire flickering unlike 
some algorithms so the frame rate doesn’t have to 
be that high either. 

If we ask how fast can our algorithm detect 
flame it really depends on the camera setting and 
scene characteristics but in ideal conditions it 
depends solely on the defined length of the minimal 
persistence interval. 

Not ideal conditions would be e.g. the flame 
is too small or too far from the camera, the flame is 
not fully visible in camera’s field of view or the 
flame movement is being distorted by another 
moving object (in one test video it was a burning 
piece of wire rolling out of flames). 

 
5.1 Strengths and weaknesses 
Similarly to other fire-detecting algorithms the most 
concerning weakness is false alarm ratio and 
avoiding it relies on combining multiple criteria 
[2][3][4][5]. If all criteria are fooled, the false alarm 
occurs. 

What was very problematic was white 
background in some videos. Anything what moves 
in front of such background can pass the movement-
and-brightness criterion because even when the 
object is not bright the algorithm sees only bright 
areas changing shape as the object covers and 
uncovers the background. 

Other concern we have is with natural 
phenomena similar to fire. When testing the 
algorithm on videos of sunset being reflected on 
moderately moving ocean surface, the false alarm 
was triggered every time. 

Other than that, our algorithm proved to 
work without major problems and was almost 
impossible to fool intentionally when processing 
real time camera input. 
 
6 Conclusion 
We had developed and successfully tested a new 
algorithm. In this stage in can be used with any 
camera system and will work mostly without error. 
However, there are certain situations in which the 
algorithm triggers false alarm. This will be the 
subject of our future research. 
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