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Abstract. The paper deals with adaptive LQ cascade control design of a tubular chemical reactor with an exothermic 
consecutive reaction. The control is performed in primary and secondary control-loops where the primary controlled 
output of the reactor is the concentration of a main reaction product and the secondary output is the mean temperature 
of the reactant. A common control input is the coolant flow rate.  The controller in the primary control-loop is a 
nonlinear P-controller with the gain calculated using simulated or measured steady-state characteristics of the reactor. 
The controller in the secondary control-loop is a LQ adaptive controller. The proposed method is verified by control 
simulations.  

1 Introduction 

Tubular chemical reactors (TCRs) are units frequently 
used in chemical industry, biotechnologies and some 
others. From the system theory point of view, TCRs 
belong to the class of nonlinear distributed parameter 
systems. Their mathematical models are described by sets 
of nonlinear partial differential equations (PDEs). The 
methods of modelling and simulation of such processes 
are described e.g. in [1] or [2]. Detailed analysis of the 
specific TCR is carried out for example in [3]. 

Tubular chemical reactors belong to hardly 
controllable processes. Difficulties associated with their 
control are given not only by their nonlinearity but also by 
the fact that concentrations of reactants cannot mostly be 
measured continuously. Here, the cascade control takes 
place as a suitable and effective control method. 

The cascade control belongs to more complex control 
structures. It may be applied in such cases where more 
output variables can be measured and where only one 
input variable is available to the control. Principles of the 
cascade control are described e.g. in [4], [5] and [6]. 

In this paper, the TCR control strategy is based on the 
fact that concentrations of components of reactions taking 
place in the reactor depend on the reactant temperature. 
Moreover, the procedure assumes that the reactant 
temperature is measured at more points along the reactor 
from which is subsequently calculated mean reactant 
temperature. Then, in the cascade control-loop, the 
concentration of a main product of the reaction is 
considered as the primary controlled variable, and, the 
mean reactant temperature as the secondary controlled 
variable. The coolant flow rate represents a common 
control input. The primary controller determining the set 
point for the secondary (inner) control-loop is derived as a 
nonlinear proportional controller using the steady-state 
characteristics of the reactor. Since the controlled process 

is nonlinear, a continuous-time adaptive controller is used 
as the secondary controller. The procedure for the 
adaptive control design in the inner control-loop is based 
on approximation of a nonlinear model of the TCR by a 
continuous-time external linear model (CT ELM) with 
recursively estimated parameters. In the process of the 
parameter estimation, a corresponding delta model is used, 
see, e.g. [7], [8] and [9]. The resulting CT controller is 
derived on the basis of the LQ control theory, see, e.g.  
(10) and the polynomial method, see, e.g. [11] or [12].  
The control is tested by simulations on the nonlinear 
model of the TCR with a consecutive exothermic reaction. 

2 Model of the reactor  

An ideal plug-flow tubular chemical reactor with a simple 

exothermic consecutive reaction 
1 2k k

A B C� �  in the liquid 
phase and with the countercurrent cooling is considered.  
Heat losses and heat conduction along the metal walls of 
tubes are assumed to be negligible, but dynamics of the 
metal walls of tubes are significant. All densities, heat 
capacities, and heat transfer coefficients are assumed to be 
constant. Under above assumptions, the reactor model can 
be described by five PDEs in the form   
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with initial conditions 
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and boundary conditions

0(0, ) ( )
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B B
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0(0, ) ( )
r r
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c c L

T L t T t� (K).
Here, t is the time, z is the axial space variable, c stands 
for concentrations, T for temperatures, v for fluid 
velocities, d for diameters, � for densities, cp for specific 
heat capacities, U for heat transfer coefficients, n1 is the 
number of tubes and L is the length of tubes. The subscript 
(�)r stands for the reactant mixture, (�)w for the metal walls 
of tubes, (�)c for the coolant, and the superscript (�)s for 
steady-state values.

The reaction rates and heat of reactions are nonlinear 
functions expressed as

0 exp j
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, j = 1, 2 (6) 

1 1 2 2( ) ( )
r r A r B

Q H k c H k c� �� � � �  (7) 

where k0 are pre-exponential factors, E are activation 
energies, ( )

r
H�� are reaction enthalpies in the negative 

consideration and R is the gas constant.
The fluid velocities are calculated via the reactant and 

coolant flow rates as
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The parameter values with correspondent units used 
for simulations are given in Table 1.

From the system engineering point of view, 
out( , )
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T t are the input variables. Among   
them,   for  the  control  purposes,  mostly  the coolant 
flow rate  can be taken into account  as the control 
variable, whereas other   inputs  entering  into  the   
process  can   be  accepted  as disturbances. In this paper, 
the mean reactant temperature
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is considered as the secondary (inner) controlled output. 
Here, zp refers to measurement points and np is their 
number. The concentration 

B
c represents the primary 

controlled output.

Table 1. Parameters and input values.

L = 8 m n1 = 1200
d1 = 0.02 m d2 = 0.024 m

d3 = 1 m

�r = 985 kg/m3
cpr = 4.05 kJ/kg K

�w = 7800 kg/m3
cpw = 0.71 kJ/kg K

�c = 998 kg/m3
cpc = 4.18 kJ/kg K

U1 = 2.8 kJ/m2s K U2 = 2.56 kJ/m2s K

k10 = 5.61�1016 1/s k20 = 1.128�1018 1/s
E1/R = 13477 K E2/R = 15290 K

(-�Hr1) = 5.8�104 kJ/kmol (-�Hr2) = 1.8�104 kJ/kmol

0 2.85s

A
c � kmol/m3

0 0s

B
c � kmol/m3

0 323s

r
T � K 293s

c L
T � K 

0.15s

r
q � m3/s

For solution of PDEs, the finite differences method is 
employed. The procedure is based on substitution of the 
space interval  0,z L�� � by a set of discrete node 
points� �

i
z for i = 1,  , n, and, subsequently, by 

approximation of derivatives with respect to the space 
variable in each node point by finite differences. The 
procedure is in detail described in [3]. 

3 Control objective  

Basic scheme of the cascade control is in Fig. 1. Here, 
NPC stands for the nonlinear proportional controller, AC 
for the adaptive LQ controller. 

Figure 1. Cascade control scheme. 

The control objective is to achieve a concentration of 
the component B as the primary controlled output near to 
its maximum. A dependence of the concentration of B on 
the mean reactant temperature is in Fig. 2.
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Figure 2. Steady-state characteristics. 
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There, the operating interval consists of two parts. In 
the first interval, the concentration B increases with 
increasing reactant temperature, in the second interval it 
again decreases. The endpoints defining both intervals are 
in Table 2.  

It can be seen in Fig. 2 that the maximum value of cB

can be slightly higher than 2.2 kmol/m3. However, the 
maximum desired value of  cB will be limited just by 2.2 
kmol/m3.

Table 2. Parameters and input values.

Interval Temperature Concentration

1 318.7 329.3
m

T� � 1.193 2.2
B

c� �   
2 332.4 338.7

m
T� � 2.2 1.142

B
c� �

For purposes of later approximations, the mean 
temperature is transformed as 

min

max min

m m

m m

T T

T T

�
�

�
�

(10) 

where min 318.7
m

T � and  max 338.7
m

T � .
The dependence of cB on � is shown in Fig. 3.
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Figure 3. Transformed steady-state characteristics. 

4 The NPC design

The procedure of the NPC design appears from 
polynomial approximation of transformed steady-state 
characteristics shown in Fig. 3. Approximate polynomials 
in both intervals are stated including their derivatives in 
Table 3.  

Table 3. Approximate polynomials and their derivatives.

Interva
l

Approximate polynomials

1 
2 31.1954 1.7848 1.9554 3.1818

B
c � � �� � � �   

21.7848 3.9108 9.5454
B

c � � � � �   

2 
2 36.1051 31.0236 35.9335 12.1564

B
c � � �� � � � �   

231.023 71.867 36.4692
B

c � � � � �   

Now, a desired value of the mean reactant temperature 
in the output of the NPC can be computed for each cB as

1

max min( ) B

w m m B w

dc
w K T T c

d�

�
� �
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� �

 (11) 

where 
Bw Bw B

c c c� � � ,
mw

w T�� ,  and Kw is a 
selectable gain coefficient.

5 CT and Delta external linear model  

For the control purposes, the controlled output and the 
control input are defined as

( ) ( ) ( ) s

c c c
u t q t q t q�� � � , ( ) ( ) ( ) s

m m m
y t T t T t T�� � �

The CT ELM is proposed in the time domain on the 
basis of preliminary simulated step responses in the form 
of the second order differential equation

1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t� � ��� �  (12) 

and, in the complex domain, as the transfer function

0
2

1 0
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b

G s

s a s a

�
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Establishing the ! operator

0

1d

T

�
! � (14) 

where � is the forward shift operator and T0 is the 
sampling period, the delta ELM corresponding to (12)
takes the form

2
1 0 0( ) ( ) ( ) ( )y t a y t a y t b u t       ! � ! � �  (15) 

where t is the discrete time.
When the sampling period is shortened, the delta 

operator approaches the derivative operator, and the 
estimated parameters ,a b  reach the parameters a, b. 

6 Delta model parameter estimation

Substituting 2t k � � , equation (15) can be rewriten to 
the form

2
1 0 0( 2) ( 2) ( 2) ( 2)y k a y k a y k b u k! !   � � � � � � � (16) 

Establishing the regression vector

� 
( 1) ( 2) ( 2) ( 2)T
k y k y k u k! !� � � � � � ��  (17) 

where  
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( 1) ( 2)( 2) y k y k
y k

T

! � � �
� �  (18) 

the vector of delta model parameters

� 
1 0 0( )T
k a a b!    �� (19) 

is recursively estimated by the least squares method with 
exponential and directional forgetting  from the ARX 
model, e.g. [12]. 

2 ( 2) ( ) ( 1) ( )T
y k k k k! !! "� � � �� �  (20) 

where 
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7 Adaptive LQ controller

The secondary feedback control loop is depicted in Fig. 4.
In the  scheme, w is a sequence of step reference signals as
outputs from the primary controller, e is the tracking error, 
u is output of the secondary controller, and y is the  
controlled output. The  transfer  function  G(s) of the CT 
ELM is given by (13). 

Figure 4. Feedback control loop. 

The controller design is based on the polynomial 
approach and the LQ control theory. Procedure for 
designing can be briefly described as follows: 

The transfer function of the AC is in the form
( )( )
( )

q s
Q s

p s

� (22) 

where q and p  are coprime polynomials satisfying the 
condition of properness deg ( ) deg ( )q s p s� . Such control 
law is sought that minimizes the quadratic cost function

2 2

0

{ ( ) ( )}S e t u t dt#
$

� �% �  (23) 

where ( )u t� is the controller output derivative and # is the 
weighting coefficient.
As known, the problem is solved by controller whose 
polynomials are given by a solution of the polynomial 
equation

( ) ( ) ( ) ( ) ( )a s p s b s q s d s� �  (24) 

with a stable polynomial d(s) on the right side, and, where 
( ) ( )p s s p s� � for a step input signal. 

Now, the polynomial d(s) takes the form
( ) ( ) ( )d s g s n s� (25) 

where g(s) is a monic form of the polynomial h(s) given 
by spectral factorization

�  � ( ) ( ) ( ) ( ) ( ) ( )s a s s a s b s b s h s h s
& & &# � � . (26) 

The second polynomial n(s) ensuring properness of the 
controller can be chosen as a result of spectral 
factorization

( ) ( ) ( ) ( )a s a s n s n s
& &� . (27) 

For G(s) with 2
1 0( )a s s a s a� � � ,  polynomials h(s), g(s)

and n(s) take forms
3 2

3 2 1 0( )h s h s h s h s h� � � �  (28) 
3 2

2 1 0( )g s s g s g s g� � � � , 3j j
g h h�  (29) 

2
1 0( )n s s n s n� � � (30) 

The polynomial d(s) has the form
5 4 3 2

4 3 2 1 0( )d s s d s d s d s d s d� � � � � �  (31) 

where

0 0 0 1 1 0 0 1 2 2 0 1 1 0

3 3 0 2 1 1 4 3 1 2

, ,
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d g n g n g d g n g

� � � � � �

� � � � �
 (32) 

Then, the resulting strictly proper controller has the 
transfer function

2
2 1 0

2
1 0

( )
( )

q s q s q
Q s

s s p s p

� �
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 (33) 

with parameters computed as  
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The above procedure implies that the secondary controller 
parameters can be adjusted by single selectable parameter 
#.

8 Simulations

All simulations were performed on nonlinear model of the 
TCR (1) – (5) with parameters in Table 1.. The 
concentration cB is measured in the period (s (s). The aim 
of simulations is to show an effect of adjustable gain Kw, 
an effect of the period (s and an effect of adjustable 
weighting parameter # on some control responses. At the 
start of simulations, the P controller with a small gain was 
used. For the !-model parameter recursive identification, 
the sampling period T0 = 0.5 s was chosen. In all cases, the 
reference signal w, the mean temperature Tm and the 
concentration cB responses were simulated.

Starting value of the coolant flow rate was always 
chosen as 0.48s

c
q � m3/s and to it corresponding initial 

values 1.194s

B
c � kmol/m3 and 318.68s

m
T � K. The 

desired value of cB has been chosen as 2.1
Bw

c � kmol/m3. 
Effect of the parameter Kw on above responses is 

evident Figs. 5 – 7. It can be seen that an increasing Kw

accelerates all signals in the control loop. However, its
value is not unrestricted and its convenient value should 
be found experimentally.

An effect of the period (s can be seen in Figs. 8 – 10.
Although shortening (s leads to faster control responses, 
its length is not freely selectable but it is determined by 
possibilities of a measurement.

The last group of simulations shows an effect of 
selectable weight coefficient # on simulated responses. It 
can be seen that its influence is little significant. This fact 
is caused by small steps in the sequence of the reference.
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Figure 5. Sequence of step references ((s = 10, # = 100). 
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Figure 6. Mean reactant temperature responses ((s = 10,
                # = 100). 
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Figure 7. Concentration cB responses ((s = 10, # = 100). 
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Figure 8. Sequence of step references (Kw = 0.15 , # = 100). 
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Figure 9. Mean reactant temperature responses (Kw = 0.15,
                # = 100). 
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Figure 10. Concentration cB responses ((s = 10, # = 100). 
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Figure 12. Mean reactant temperature responses (Kw = 0.1,  
                 (s = 10).
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Figure 13. Concentration cB responses (Kw = 0.1, (s = 10). 

9 Conclusions

The article presents the cascade control design of a tubular 
chemical reactor. The procedure is based on a possibility 
of measuring the concentration of a main product of a 
reaction taking place in the reactor and measuring the 
temperature of the reactant at multiple points along the 
reactor. The control is performed in the external (primary) 
and inner (secondary) closed-loops  where the 
concentration of a main product on the output of the 
reactor is the primary and the mean reactant temperature 
the secondary controlled variable. A common control 
input is the coolant flow rate.

The controller in the external control-loop is a discrete 
nonlinear P-controller derived on the basis of simulated or 
measured steady-state characteristics of the reactor. The 
controller in the inner control-loop is an adaptive LQ 
continuous-time controller. In its derivation, the recursive 
parameter estimation of an external delta model of the 
reactor, the polynomial approach and the LQ control 
theory are applied.

The presented method has been tested by computer 
simulation on the nonlinear model of the tubular chemical 
reactor with a consecutive exothermic reaction. 
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