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Abstract. This paper deals with the study of a non-stationary heat conduction in the solid wall. It is focused on

mathematical modelling of its asymmetric heating and cooling by imperfect heat transfer to both sides of the

wall. It describes method used for deriving of the long time analytical solution describing temperature distribu-

tion in the heated (cooled) wall by use Laplace transform and verification of its validity by numerical calculation

with COMSOL Multiphysics software. In the tested example, the maximum difference between analytical and

numerical solution was about 3.5 % considering the possible maximum and minimum temperatures in the wall

under the given conditions.

1 Introduction

Non-stationary heat conduction in a wall made of the solid

material is a phenomenon that can occur all around us. It is

part of many technological operations, but also also takes

place within the walls of heated or cooled building struc-

tures, in components of many electronic devices, in heat-

ing and cooling equipment etc.

Knowledge of these processes course is necessary to

ensure optimal heat supplying or heat dissipation and the

associated avoidance of damage to materials or reduce en-

ergy intensity etc.[1].

But course of heating and cooling depends on many

factors such as the dimensions and material properties of

the walls but also the intensity of heat transfer between the

wall surface and the surroundings [1–4].

To assess the course of non-stationary phenomena is

often advantageous to use a combination of an experimen-

tal testing and computer simulation study done for the re-

quired initial and boundary conditions. In the paper [5]

we dealt a mathematical model of non-stationary heat con-

duction under the condition of symmetric heating or cool-

ing and also with asymmetric heating or cooling under the

conditions of perfect heat transfer between surface of the

wall and ambient liquid on the both sides of the wall.

In this paper we also deal with mathematical modelling

of a heat conduction in the solid wall during its asymmetric

heating and cooling but we will suppose conditions of the

imperfect heat transfer to both sides of the wall, which

significantly influences time course of the studied process.
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2 Description of a Studied Model

In the following text we describe a mathematical model of

the transient heat conduction in a solid wall which is made

of isotropic material. Geometrical sketch of the studied

model is depicts in Figure 1.

The length and width of the wall are order of magni-

tude larger than its thickness. The wall of the initial tem-

perature tp, being subjected to a sudden thermal effect of

surrounding liquid, wherein the constant ambient tempera-

ture to1 exerted on the left side of the wall is different than

the constant ambient temperature to2 on the right side of

the wall. Moreover, the heat transfer coefficients α1, α2

on both sides of the wall are mutually different. Temper-

atures of both the surrounding environments are indepen-

dent of time and they are different from the initial temper-

ature considered wall.

We will suppose the following cases of heating or cool-

ing of the wall:

tp < to1 < to2 ∧ α1 � α2,

tp < to2 < to1 ∧ α1 � α2,

tp > to1 > to2 ∧ α1 � α2,

tp > to2 > to1 ∧ α1 � α2.

Mathematical model of the studied problem is repre-

sented by a linear parabolic partial differential equation (1)

[6], with initial condition (2) and boundary conditions (3) -

(4) of imperfect heat transfer between surfaces of the wall

and the surroundings:
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Figure 1. Geometrical sketch of the studied model of non-

stationary heat conduction in the solid wall.

∂t (x, τ)
∂τ

= a
∂2t (x, τ)
∂x2

, 0 ≤ x ≤ δ, τ > 0 (1)

t (x, 0) = tP (2)

−λ ∂t (0, τ)

∂x
= −α1 (t (0, τ) − to1) (3)

−λ ∂t (δ, τ)

∂x
= α2 (t (δ, τ) − to2) (4)

The symbols used in equations (1) - (4) mean:

a - thermal diffusivity, [m2.s−1];

t - time dependent temperature of the wall, [oC];
tp - initial temperature of the wall, [oC];
to1 - ambient temperature on the left side of the wall, [oC];
to2 - ambient temperature on the right side of the wall, [oC];
x - space coordinate, [m];
α1 - heat transfer coefficient on the left side of the wall,

[W.m−2.K−1];

α2 - heat transfer coefficient on the right side of the wall,

[W.m−2.K−1];

δ - thickness of the wall, [m];
λ - thermal conductivity of the wall, [W.m−1.K−1];

τ - time, [s].

3 Method Used for the Model Solving

For solving of the above described mathematical model

we applied the Laplace transform technique for parabolic

partial differential equation described in literature [7], [8].

The Laplace transform of a function f (τ), defined for

all real numbers τ ≥ 0, is the function F (s), which is a

unilateral transform defined by equation (5):

F (s) =
∫ ∞

0

exp−sτ dτ. (5)

According to [7], the long time solution can be ob-

tained by expansion theorem in the Laplace domain as

F(s):

F (s) =
p (s)
q (s)
. (6)

In our case, a polynomial q (s) has an infinite number

of roots. If s = μ0, n = 1 . . .∞ are the distinct roots of

q (s), q (s) can be factorized as:

q (s) = (s − μ1) (s − μ2) . . . (s − μn) . . . (s − μ∞) . (7)

Assuming that order of polynomial q (s) is greater than

order of p (s), the equation (6) can be converted to partial

fractions as:

F (s) =
B1

s − μ0

+
B2

(s − μ0)2
+

∞∑
n=1

An

s − μn
. (8)

Where

B1 = lim
s→μ0

(
d
ds

(
p (s) (s − μ0)2

q (s)

))
, (9)

B2 = lim
s→μ0

(
p (s) (s − μ0)2

q (s)

)
, (10)

An =
p (μn)

q′ (μn)
. (11)

The analytical solution in time domain can be obtained

by inverse Laplace transform as [7]:

f (s) = L−1 (F (s)) = B1 exp (μ0τ) + B2τ exp (μ0τ)+
∞∑

n=1

An exp (μnτ) .

(12)

The procedure described by equations (6) - (12) we

programmed in the user interface of MAPLE software. By

calculation with the software Maple we derived analyti-

cal solution in a relatively complicated form. A simplified

form of the analytical solution is described by the equa-

tion (13):

t (x, τ) = Q1 +

∞∑
n=0

2
e−Q2τ (Q3 + Q4 + Q5 − Q6)

Q7

. (13)

Symbols Q1 − Q7 represent the following parts of the

equation (13):

Q1 =
α2to2λ + α1λ to1 + α1α2 (to2x − to1x + to1δ)

α2λ + α1λ + α1α2δ
, (14)
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Q2 =
qn

2a
δ2
, (15)

Q3 = (tP − to2) sin
(qnx
δ

)
α2α1a2qn+ (16)

(to1 − tP) cos (qn) sin
(qnx
δ

)
α2α1a2qn,

Q4 =

(
−tP + cos

(qnx
δ

)
(−to1 + tP)

)
sin (qn)α2, α1a2qn

(17)

Q5 = i
(
−qn

2a
δ2

)3/2

λ
√

a sin (qn)− (18)

a2qn
2 (α2 + α1) cos (qn) tPλ

δ
,

Q6 =
(
to1 − tp

)
α1 sin

(qnx
δ

)
sin (qn) qn

2a2λδ−1(19)

+ ((−tP + to2)α2) qn
2a2λδ−1

+ (to1 − tP)α1 cos (qn) cos
(qnx
δ

)
qn

2a2λδ−1,

Q7 =
qn

4a2λ2 cos (qn)

δ2
+ (20)

i
√

a
(
−qn

2a
δ2

) 3
2

δ λ sin (qn) (5 λ + α1δ + α2δ)+

ia
3
2

√
−qn

2a
δ2

(3α1α2δ sin (qn) )+

ia
3
2

√
−qn

2a
δ2

(qn cos (qn) (4λ(α2 + α1) + α1α2δ)) .

The positive roots q can be calculated from a transcen-

dental equation (21):

q =
ia

(
α2 cos (q) qλ δ − λ2q2

)
(√

− q2a
δ2

)
δ2

+

ia
(
sin (q) δ2 + α1λ q cos (q) δ

)
(√

− q2a
δ2

)
δ2

. (21)

In the Figure 2 is shown computed temperature dis-

tribution in the wall during its heating. Figure 2a depicts

3D temperature distribution, Figure 2b depicts tempera-

ture curves in required times of cooling.

Temperature distribution in the wall in case of the cool-

ing is shown in the Figure 3.

4 Verification of the Model Solution
Validity

For the verification of the derived solution accuracy we

compared data obtained by analytical solution (13) using

MAPLE with results of computer simulation of the same

model by COMSOL Multiphysics software, which per-

forms calculations of physical processes numerically by

finite element method.

Results based on analytical solution (13) and computer

simulation are shown in Figure 4. The temperature fields

during heating and cooling of the wall calculated by

both procedures were similar. In the example shown in

Figure 4, the maximum difference was about 0.7 oC, which

makes the difference of 3.5 % relative to the possible

maximum and minimum temperatures in the wall under

the given conditions.

5 Discussion

The above-described method which was used for the

derivation of analytical solution (13) is suitable for long

time solution heating (cooling) of the wall [7]. In this case,

solution appears to be sufficiently accurate. To derive an

analytical solution in case of short time heating (cooling),

the used mathematical method should be modified [7].

The derived analytical solution is valid for asymmet-

ric heating, provided that both ambient temperatures are

higher than the initial temperature of the wall or one of the

ambient temperatures may be equal to the initial wall tem-

perature. Similarly, when cooling is required, both to am-

bient temperatures were lower than the initial temperature

of the wall. Alternatively, one of ambient temperatures

may be equal to the initial temperature of the wall.

Special case of a transient heat conduction in the

wall can occur if the wall is heated from one side and

cooled simultaneously from the other side heated (i.e. for

to1 < tp < to2 or to1 > tp > to2).
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Figure 2. Heating of the wall; a) 3D temperature distribution, b) temperature curves in required times of heating. The used parameters:

tp = 5 oC, to1 = 15 oC, to2 = 25 oC, δ = 0.1 m, α1 = 30 W.m−2.K−1, α2 = 10 W.m−2.K−1, λ = 0.2 W.m−1.K−1, � = 1140 kg.m−3,

cp = 1200 J.kg−1.K−1.

Figure 3. Cooling of the wall; a) 3D temperature distribution, b) temperature curves in required times of cooling. The used parameters:

tp = 25 oC, to1 = 15 oC, to2 = 5 oC, δ = 0.1 m, α1 = 30 W.m−2.K−1, α2 = 10 W.m−2.K−1, λ = 0.2 W.m−1.K−1, � = 1140 kg.m−3,

cp = 1200 J.kg−1.K−1.

6 Conclusion
This paper presented mathematical model of a heat con-

duction in the solid Wall during its asymmetric heating and

cooling by imperfect heat transfer to both sides of the wall.

The analytical solution of the studied model was derived

by using Laplace transform and its validity was verified by

numerical calculation with COMSOL Multiphysics soft-

ware.

The derived analytical solution is suitable for the

description of long time processes. Therefore, further

studies will focus on the derivation of an analytical

solution for the short time processes.
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Figure 4. Comparing of analytical solution for model of transient heat conduction solved in Maple and numerical solution obtained by

the simulation with software COMSOL Multiphysics; temperature field a) for heating, b) for cooling of the wall. The used parameters:

a) tp = 5 oC, to1 = 15 oC, to2 = 25 oC, δ = 0.1 m, α1 = 30 W.m−2.K−1, α2 = 10 W.m−2.K−1, λ = 0.2 W.m−1.K−1, � = 1140 kg.m−3,

cp = 1200 J.kg−1.K−1; b) tp = 25 oC, to1 = 15 oC, to2 = 5 oC, δ = 0.1 m, α1 = 30 W.m−2.K−1, α2 = 10 W.m−2.K−1, λ = 0.2 W.m−1.K−1,

� = 1140 kg.m−3, cp = 1200 J.kg−1.K−1.
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ings of the 13th WSEAS International Conference on
Automatic control, modelling& simulation, (Lanzarote,

Canary Islands: WSEAS Press, 2011)

[3] L. Vašek, V. Dolinay, Proceedings of the 14th WSEAS
International Conference on Systems. Latest Trends on
Systems.Volume II, (Rhodes, Greece: WSEAS Press,

2010) pp. 439-442

[4] L. Xue, G.Dui, B. Liu, J. Zhang, Mechanics of Ad-

vanced Materials and Structures, 10, 23 (2016)

[5] H. Charvátová, D. Janáčová, K. Kolomazník, WSEAS
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