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Fig. 3. Calculation of Cost Value (a) and Penalty Value (b) 
 

In this phase, the black cells (clues)can not be changed, 
sothe following operations work only with white (consecutive) 
cells for each individual x: 
• Randomly choose another 3 individualsa, band c 
• Mutate chosen individuals:  

 
 yi = Round(ci + F · (ai – bi)) (1) 

 
• Crossover: 

o Generate random number from the range (0,1) for each 
value of white cells 

o If the random number<Cr, select the value from 
individual xi, otherwise select the value from individual yi 

• Check new individual for beingwithin constraints: 
o If value in a white cell is out of bounds, generate a new 

onefrom interval <1; 9> 
• Evaluate the newly created individual 
• If f(new individual) < f(xi) then replace the individual in the 

population (retain individual with better cost value) 
This cycle is evaluated untiltermination criteria are met –the 
maximum number of generations or the solution is is 
found(cost value equals to0). 

 
3. EXPERIMENS AND RESULTS 

 
The experiments consisted of solving six differentKakuro 

puzzles: two marked with easy difficulty, two with medium 
difficulty a two with wicked difficulty (each with varying size). 
Table 1 shows the parameters of used puzzles and parameters 
of DE. The parameters of differential weight F and crossover 
probability Cr were chosen with respect to preliminary testing. 
Population size NP and number of generations Gen were picked 
according to to number of empty cells and given clues. 

 
Puzzle Size Empty Clues NP F Cr Gen 
Easy1 5x5 10 8 100 0.3 0.7 100 
Easy2 7x7 19 13 200 0.3 0.7 200 
Medium1 6x6 16 10 250 0.3 0.7 200 
Medium2 8x8 27 18 200 0.3 0.7 500 
Wicked1 8x8 35 21 300 0.3 0.7 500 
Wicked2 9x9 40 22 450 0.3 0.7 500 

Tab. 1.Experiments’ settings 
 

For each puzzle, the experiment was repeated 50 times, 
always with new randomly generated initial population. Results 
are summarised in Table 2. 
 

Puzzle Success 
rate Min cfe* Max cfe* Mean cfe*

Easy1 60% 3,700 9,800 5,357 
Easy2 74% 9,600 18,600 12,676 
Medium1 76% 9,500 26,500 17,083 
Medium2 50% 10,400 20,400 12,744 
Wicked1 50% 49,200 81,000 63,372 
Wicked2 42% 71,100 148,050 92,871 

*cfe – cost function evaluation 
Tab. 2. Obtained results 

As can be seen from data in Table 2, DE wasthe most 
successfulin solving the Medium1 puzzle.Our experiments 
indicate that the difficulty level of solved puzzlesdoes not 
direcly relate to acquired results. In this case, the measure of 
difficulty is the size of puzzle. Based on the number of cost 
function evaluations, we can say that the Medium1 puzzle 
seems to be easierthen the Easy2 puzzle. However, the 
difference betwen mean value of cfe for the Medium2 and 
Easy2 puzzles wasminimal. 

 
4. CONCLUSION 
 

This paper presented the Differential Evolution approach to 
solve Kakuro puzzles. As we can see from the obtained results 
the proposed method exploiting Differential Evolution is able to 
solve all tested Kakuros.However, we wouldlike to point out 
thatnot even on the easiest Kakuro puzzle level the DE was not 
able to find correct solution in all 50 runs. 

The future research will consist of implementing another 
control function for repeated digits to limit the search space. 
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