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The paper focuses on robust stabilization where the suitable parameters of a simple continuous-time PI controller are determined
through a combination of the Kronecker summation method, sixteen plant theorem, and an algebraic approach to control design in
the ring of proper and stable rational functions. The initial theoretical background is followed by an illustrative experiment which
includes computation of the controller and verification of control results for a continuous stirred tank reactor with exothermic
reaction modelled as a fourth-order interval system.

1. Introduction

A popular and practically preferred approach to appropriate
control synthesis for plants with complex properties consists
of construction of an uncertain model, which should cover
all possible operating points, parameter variations and non-
linear behavior, and consequent robust control design [1, 2].
Although the resulting controllers can have a simple struc-
ture and fixed parameters, which is even acknowledged from
the practical application viewpoint, both process modelling
and control design are generally nontrivial tasks.

Chemical reactors, which belong among the most inter-
esting and critical processes in all chemical engineering, re-
present the class of systems suitable for robust control ap-
plications. Their control is usually affected by very complex
behavior and, moreover, bounded with potential safety prob-
lems. A common type of reactor is known as a continuous
stirred tank reactor (CSTR) [3]. The mathematical model of
CSTR, robustly stabilized in this paper, has been constructed
in [4]. Moreover, the same work has presented stabilization
of the CSTR using technique from [5, 6] embellished with
a polynomial control. Besides, robust static output feedback
control has been utilized to this CSTR in [7]. The idea of
robust stabilization applied in this paper is similar to [4], but

the contribution is mainly in the use of alternative methods,
that is, combination of the Kronecker summation method
[8] and an algebraic approach to control design under the
ring of proper and stable rational functions (RPS) allowing
the elegant tuning [9–14] which has been already investigated
in [15, 16].

This paper deals with design of robustly stabilizing
continuous-time PI controllers for a continuous stirred tank
reactor (CSTR) in which exothermic reaction occurs. The
controlled plant is assumed as a fourth-order interval plant,
and easily tunable PI controller is designed in order to ro-
bustly stabilize the closed control loop. As a synthesis meth-
od, the combination of Kronecker sum method, sixteen
plant theorem and an algebraic approach, is utilized. This
compound and its application to the chemical reactor model
represent the key contribution of the work. The robust sta-
bilization is verified on a simulative example.

The paper is organized as follows. In Section 2, the
Kronecker summation method is described. Section 3 then
extends the idea for an interval plant. Subsequently, Section 4
briefly outlines the algebraic approach to controller design
itself. Next, a chemical reactor description and specific con-
trol experiment are provided in the extensive Section 5. And
finally, Section 6 offers some conclusion remarks.
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Figure 1: The classical closed control loop.

2. Kronecker Summation Method

An interesting technique for computation of stabilizing PI
controllers based on the Kronecker summation has been
presented in [8]. The main purpose of the method is to
find possible variations of PI controller parameters which
ensure stability of the classical one-degree-of-freedom closed
control loop according to Figure 1, where

G(s) = B(s)
A(s)

(1)

is transfer function of a controlled system with fixed coef-
ficients, and

C(s) = kP +
kI
s
= kPs + kI

s
(2)

is a PI controller.
Remember that Kronecker summation of two general

square matrices Q (with size q-by-q) and R (r-by-r) is
defined as [17]

Q ⊕ R = Q ⊗ Ir + Iq ⊗ R, (3)

where Iq, Ir are identity matrices of size q-by-q and r-by-r,
respectively, and where ⊗ stands for the Kronecker product.
For example,

Q ⊗ Ir =

⎡
⎢⎢⎢⎢⎣

q11Ir · · · q1qIr

...
. . .

...

qq1Ir · · · qqqIr

⎤
⎥⎥⎥⎥⎦
. (4)

The significant feature of the final square matrix (3) (qr-
by-qr) is that it has qr eigenvalues which are pair-wise
combinatoric summations of the q eigenvalues of Q and r
eigenvalues of R. In other words, the operation of Kronecker
summation induces the “eigenvalue addition” feature to
the matrices. One can exploit this property to obtain the
equation for which all pairs (kP , kI) leading to purely im-
aginary roots comply.

The characteristic equation of the closed control loop
(Figure 1) has the form

PCL = A(s)s + B(s)(kPs + kI)

= fn(kP , kI )sn

+ · · · + f1(kP , kI)s + f0(kP , kI)

= 0.

(5)

Now define

x′1 = x2

x′2 = x3

...

x′n =
f0(kP, kI )
fn(kP , kI)

x1 − f1(kP , kI)
fn(kP , kI )

x2 − · · ·− fn−1(kP , kI)
fn(kP, kI )

xn,

(6)

and transform (5) into matrix differential equation

X′ =MX, (7)

where M is matrix of size n-by-n

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0

0 0 1 0 · · · 0

... 0 0 1 · · · ...

...
...

...
...

. . . 0

0 0 0 · · · 0 1

− f0(kP , kI)
fn(kP, kI )

− f1(kP , kI)
fn(kP , kI)

− f2(kP, kI )
fn(kP , kI)

· · · · · · − fn−1(kP , kI)
fn(kP , kI)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

and X′ = [x′1, x′2, . . . , x′n]T, X = [x1, x2, . . . , xn]T. Equations
(5) and (7) are connected by relation

PCL = fn(kP , kI) det(sI −M) = 0. (9)

Evidently, the same complex variable s is both the root
of (5) and the eigenvalue of M. Thanks to the fact that M is
a constant matrix, the complex conjugates of s must satisfy
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also (9), that is,

det(s∗I −M) = 0. (10)

Consequently, as it was presented in [8], if s = jω is the root
of (5) it must be the eigenvalue of M. Furthermore, s∗ =
− jω is also the root of (5) and the eigenvalue of M. As the
summation of two eigenvalues s = jω and s∗ = − jω is equal
to zero, the Kronecker summation of two matrices must be
singular when such correspondence of kP, kI , and ω occurs.
Thus,

det(M ⊕M) = 0 (11)

determines the stability boundary in (kP , kI) plane, because
every couple (kP, kI ) satisfying (11) means that the same cou-
ple inserted into (5) will lead to the pair of conjugate purely
imaginary roots or zero roots. These positions together with
the line kI = 0 are the only ones where the system stability
can shift. Generally, the stability boundary splits the (kP, kI )
plane into the stable and unstable areas. The selection of the
stabilizing region(s) can be performed through a test point
and corresponding representative polynomial within each
area.

3. Robust Stabilization of Interval Systems
Using PI Controller

So far, we could apply the Kronecker sum method to calculate
a region of stabilizing PI controller parameters for plant with
fixed coefficients. However, the papers [5, 6, 8] extended this
(or an alternative) stabilization technique also for interval
systems. The simple idea consists of the combination with the
so-called sixteen plant theorem [1, 18, 19]. This proposition
says that a first-order controller (such as PI controller)
robustly stabilizes an interval plant

G(s,b,a) = B(s,b)
A(s,a)

=
∑m

i=0

[
b−i ,b+

i

]
si

sn +
∑n−1

i=0

[
a−i ,a+

i

]
si

, m < n, (12)

if and only if it stabilizes its sixteen Kharitonov plants.
The values b−i , b+

i , a−i , and a+
i represents, respectively,

lower and upper bounds for parameters in numerator and
denominator.

Remember that the Kharitonov plants are defined as

Gi, j(s) = Bi(s)
Aj(s)

, (13)

where i, j ∈ {1, 2, 3, 4}; B1(s) to B4(s) and A1(s) to A4(s)
are the Kharitonov polynomials for the numerator and
denominator of the interval system (12), that is [20],

B1(s) = b−0 + b−1 s + b+
2 s

2 + b+
3 s

3 + · · ·
B2(s) = b+

0 + b+
1 s + b−2 s

2 + b−3 s
3 + · · ·

B3(s) = b+
0 + b−1 s + b−2 s

2 + b+
3 s

3 + · · ·
B4(s) = b−0 + b+

1 s + b+
2 s

2 + b−3 s
3 + · · · ,

(14)

and analogically

A1(s) = a−0 + a−1 s + a+
2 s

2 + a+
3 s

3 + · · ·
A2(s) = a+

0 + a+
1 s + a−2 s

2 + a−3 s
3 + · · ·

A3(s) = a+
0 + a−1 s + a−2 s

2 + a+
3 s

3 + · · ·
A4(s) = a−0 + a+

1 s + a+
2 s

2 + a−3 s
3 + · · · .

(15)

Thus, robust stabilization of interval system directly fol-
lows from the simultaneous stabilization of all sixteen fixed
Kharitonov plants. The final stability region for the original
interval system is given by the intersection of sixteen partial
regions obtained individually via the Kronecker summation
method.

4. Algebraic Tuning of PI Controller

Recapitulate that for now we are able to compute all possible
robustly stabilizing variations of proportional and integral
parts in PI compensator. However, the final choice of the con-
troller from the obtained stability region represents another
task. A very good survey on PI(D) control issues is provided,
for example, in [21]. For the purpose of this paper, a
simple but effective solution offers an algebraic approach to
control synthesis [9–11]. This fractional design is grounded
in general solutions of Diophantine equations in RPS, Youla-
Kučera parameterization of controllers, and conditions of
divisibility in RPS. One of main advantages of this method
can be seen in the existence of the only tuning parameter
m > 0 which serves for influencing the control behavior. This
paper is not going to explain the details of this approach.
Interested readers can find them, for example, in [11–14].
This work only takes advantage of one simple tuning rule.
The parameters of PI controller (2) can be computed in
compliance with

kP = 2m− a0

b0
, kI = m2

b0
, (16)

where a0 and b0 come from the first-order nominal con-
trolled plant

GN(s) = b0

s + a0
, (17)

and where the tuning parameter m > 0 can be selected, for
example, using the recommendation from [12]

m = ka0. (18)

Suitable coefficient k depends on the size of first overshoot.
For example, the choice k = 2.14, which is applied in the
following simulation experiments, leads to 3% overshoot.

5. Application to a Chemical Reactor

5.1. CSTR Description. The controlled process adopted from
[4, 7, 22] represents hydrolysis of propylene oxide to
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propylene glycol in a CSTR. More specifically, the chemical
reaction of the process is

C3H6O + H2O −→ C3H8O2. (19)

Besides propylene oxide and water, methanol is also added
to the CSTR in order to improve the solubility of propylene
oxide in water. The excess of water ensures higher selectivity
to propylene glycol and eliminates consecutive reactions of
propylene oxide with nascent propylene glycol. Dependence
of the rate constant of chemical reaction on the temperature
can be described by the well-known Arrhenius equation

k = k∞e−E/RTr , (20)

where k means reaction rate constant, k∞ is the pre-
exponential factor, E represents the activation energy, R
signifies the universal gas constant, and Tr is the temperature
of the reaction mixture.

Under assumption of ideal mixing in the CSTR, constant
reacting volume, and the identical volumetric flow rates of
the inlet and outlet streams, the mass balance of the system
can be given by

Vr
dci
dt
= qr(ci0 − ci) + Vrνir i = 1, 2, 3, (21)

where Vr stands for the reacting volume, ci means the
molar concentration of the ith component, ci0 is the feed
molar concentration of the ith component, qr represents the
volumetric flow rate of the reaction mixture, νi determines
the stoichiometric coefficient of the ith component, and r =
kcC3H6O is the molar rate of the chemical reaction.

Further, independency of the specific heat capacities,
densities, and volumetric flow rates on temperature or mix-
ture composition has been supposed. Moreover, the mixing
volume and the heat of mixing have been neglected. So,
the simplified enthalpy balance of the reaction mixture
and the simplified enthalpy balance of the cooling medium
introduced in the monograph [23] and subsequently in the
papers [4, 7] can be formulated as, respectively,

Vrρrcpr
dTr

dt
= qrρrcpr(Tr0 − Tr)−UA(Tr − Tc)

+ Vr(−ΔrHo)r

Vcρccpc
dTc

dt
= qcρccpc(Tc0 − Tc) + UA(Tr − Tc),

(22)

where T means the temperature, ρ represents the density,
cp is the specific heat capacity, ΔrH0 stands for the reaction
enthalpy, U is the overall heat transfer coefficient, and A is

the heat exchange area. Furthermore, meaning of subscripts
is as follows: 0 is for the feed, c for the cooling medium,
and r for the reaction mixture. Equation (22) represents a
standard in CSTR design. Interested readers can find the
specific values of all constant parameters and steady-state
inputs of the CSTR in tables in [4, 7].

In fact, the physical parameters (such as reaction
enthalpy, pre-exponential factor, and overall heat transfer
coefficient) of this CSTR are not known exactly but they are
supposed to vary within some intervals (see again [4, 7]).
However, this paper particularly takes advantage of the final
mathematical model of the CSTR introduced in [4], where
it is obtained in the linearized form of an interval transfer
function:

G(s,b,a) = b2s2 + b1s + b0

s4 + a3s3 + a2s2 + a1s + a0
, (23)

with parameters which can vary within the following
bounds:

b2 ∈ 〈−0.0291, −0.0245〉
b1 ∈ 〈−0.0199, −0.0127〉

b0 ∈ 〈−0.0005740, −0.0003549〉
a3 ∈ 〈0.5801, 0.9030〉
a2 ∈ 〈0.1002, 0.2299〉
a1 ∈ 〈0.0062, 0.0142〉

a0 ∈ 〈0.0001094, 0.0002412〉.

(24)

5.2. Control Experiments. The interval transfer function (23)
with parameters (24) describing the CSTR is considered to be
the controlled plant. The first of its sixteen Kharitonov plants
(13) is

G1,1(s) = −0.0245s2 − 0.0199s− 0.000574
s4 + 0.903s3 + 0.2299s2 + 0.0062s + 0.0001094

.

(25)

Corresponding closed-loop characteristic (5) can be com-
puted as

s5 + 0.903s4 + (0.2299− 0.0245kP)s3

+ (0.0062− 0.0199kP − 0.0245kI)s2

+ (0.0001094− 0.000574kP − 0.0199kI)s

− 0.000574kI = 0.

(26)

which means that the matrix (8) takes the following form:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− f0(kP , kI)
f5(kP , kI)

− f1(kP, kI )
f5(kP, kI )

− f2(kP , kI)
f5(kP , kI)

− f3(kP , kI)
f5(kP , kI)

− f4(kP, kI )
f5(kP, kI )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27)
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Figure 2: Areas of stability/instability for the Kharitonov plant (25).
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Figure 3: Areas of stability for sixteen Kharitonov plants.

where

− f0(kP , kI)
f5(kP , kI)

= 0.000574kI

− f1(kP , kI)
f5(kP , kI)

= −0.0001094 + 0.000574kP + 0.0199kI

− f2(kP, kI )
f5(kP, kI )

= −0.0062 + 0.0199kP + 0.0245kI

− f3(kP, kI )
f5(kP, kI )

= −0.2299 + 0.0245kP

− f4(kP , kI)
f5(kP , kI)

= −0.903.

(28)

The stability boundary is determined by (11). The po-
sitions of such pairs (kP, kI ) which fulfill (11) are plotted in
Figure 2. The decision on area of stability and instability can
be simply done with the assistance of an arbitrary testing
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Figure 4: Zoomed robust stability region for the interval system
(23), (24).
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Figure 5: Position of controller (32) in stability region.

point from the appropriate set. Moreover, the figure is
supplemented with the half line kI = 0 bordering the “upper”
part of the stabilizing area.

Further, we must repeat the analogical procedure for
all sixteen Kharitonov plants. The stability areas for the
Kharitonov plants are depicted in Figure 3, and its zoomed
version with highlighted intersection of all particular areas
of stability is shown in Figure 4. The highlighted area rep-
resents the final region of robustly stabilizing PI controller
parameters for the original interval transfer function of
CSTR (23), (24).

The following question is how to find the practically
convenient PI controller from the obtained robust stability
region. This paper utilizes the algebraic-based approach out-
lined in the Section 5. Nevertheless, this method requires a
first-order fixed nominal model (17) of controlled plant in
order to compute the final controller of appropriate (first)
order, that is, with PI structure. So, the paper employs very
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Figure 6: Output signals of 128 “representative” plants and
nominal system.
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Figure 7: Control signals for 128 “representative” plants and
nominal system.

simple but effective method of obtaining such model. In
the first step, the fourth-order model with fixed parameters
has been computed using the average values of interval
parameters in (23), (24):

GA(s) = −0.0268s2 − 0.0163s− 0.00046445
0.74155s3 + 0.16505s2 + 0.0102s+ 0.0001753

.

(29)

Next, the simplest possible approximation takes advantage
of neglecting the higher than zero-order powers of s in
numerator and higher than first-order powers of s in
denominator, that is, the corresponding coefficients are
supposed to be zero. This approximation is easy but efficient
enough as can be seen in the following steps. Obviously, it

results in a first-order nominal model suitable for the applied
synthesis:

GN(s) = −0.00046445
0.0102s+ 0.0001753

= −0.045534
s + 0.017186

. (30)

Further, (16) has been used for the calculation of PI
controller parameters while the tuning parameter m has been
chosen according to (18)

m = 2.14 · a0 = 2.14 · 0.017186
.= 0.036778, (31)

in order to obtain 3% first overshoot for the nominal case.
Consequently, the resulting controller is given by

C(s) = −1.238s− 0.029706
s

. (32)

This controller is located inside the stability region as
can be seen in Figure 5. It means that the regulator robustly
stabilizes the CSTR (23), (24). Besides, the controller lies
on the curve hypothetically connecting the other potential
controllers tuned by various parameters m > 0.

Finally, the robust stability and control performance
is confirmed and demonstrated in Figure 6. It shows the
output signals of the control loop with designed PI controller
(32) and 128 “representative” systems from the interval
family describing the CSTR (23), (24). The minimum and
maximum values of each interval parameter have been used.
It results in 27 = 128 systems for simulation. On top of
that, the red curve represents the output for the nominal
system (30). Furthermore, Figure 7 depicts corresponding
128 + 1 control (actuating) signals. As far as control quality is
considered, the results from Figure 6 might not be impressive
at first sight, but there is a tradeoff between the simplicity of
applied control algorithm and the performance here. As can
be seen, the only one off-line tuned feedback PI controller
with fixed coefficients has been utilized for controlling the
chemical reactor with all the possible variations of uncertain
parameters. We can observe that the CSTR is robustly
stabilized successfully.

6. Conclusion

The main aim of the paper has been to present a possible
approach to robust stabilization of a CSTR with exothermic
reaction modelled as a fourth-order interval system. The
developed easy but effective method of PI controller design
has combined the Kronecker summation method with
sixteen plant theorem and the algebraic tools. The proposed
technique is applicable to a wide range of real processes,
provided that they can be expressed by means of interval
system and subsequently temporarily approximated by a first
order model. The demerit of the method can be seen in a
missing guarantee of coincident nominal performance and
robust stability before the design process itself. They have
to be verified during or after the design. Nevertheless, the
applicability has been clearly demonstrated on the example
where the CSTR has been successfully robustly stabilized.
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