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Abstract 
This research deals with the optimization of the 
control of chaos by means of evolutionary 
algorithms. This work is aimed on an explanation of 
how to use evolutionary algorithms (EAs) and how 
to properly define the advanced targeting cost 
function (CF) securing very fast and precise 
stabilization of desired state for any initial 
conditions. As a model of deterministic chaotic 
system, the one dimensional Logistic equation was 
used. The evolutionary algorithm Self-Organizing 
Migrating Algorithm (SOMA) was used in four 
versions. For each version, repeated simulations 
were conducted to outline the effectiveness and 
robustness of used method and targeting CF.  
 
Keywords: Chaos, control, optimization, 
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 1. Introduction 
The question of targeting (faster stabilization) with 
application to chaos control has attracted researchers 
since the first method for controlling of chaos was 
developed. The several first approaches for targeting 
have used special versions of OGY control scheme 
[1], [2] or collecting of information about 
trajectories, which fall close to desired state [3]. 
Later, alot of methods were based on adaptive 
approach [4], center manifold targeting [5] or neural 
networks [6], [7]. 
Currently, evolutionary algorithms (EA) are known 
as powerful tools for almost any difficult and 
complex optimization problem. But the quality of 
obtained results through optimization mostly 
depends on proper design of the used cost function, 
especially when the EAs are used for optimization of 
chaos control. The results of numerous simulations 
lends weight to the argument that deterministic chaos 
in general and also any technique to control of chaos 
are sensitive to parameter setting, initial conditions 
and in the case of optimization, they are also 
extremely sensitive to the construction of used cost 
function. 
This research utilized the Pyragas’s delayed 
feedback control technique [8], [9]. Unlike the 
original OGY control method [10] it can be simply 
considered as a targeting and stabilizing algorithm 

together in one package [11]. Another big advantage 
of Pyragas method is the amount of accessible 
control parameters. This is very advantageous for 
successful use of optimization of parameters setting 
by means of EA, leading to improvement of system 
behavior and better and faster stabilization to the 
desired periodic orbits. Some research in this field 
has been recently done using the evolutionary 
algorithms for optimization of local control of chaos 
[12], [13]. The control law in this work is based on 
the Pyragas method: Extended delay feedback 
control – ETDAS [14]. 
This research is concerned with the investigation of 
the design of the advanced targeting cost functions 
securing the stabilization to desired UPO (unstable 
periodic orbit) for any initial conditions. This work 
presents a accumulation of research [15] and also 
collates and elaborates the experiences with 
application of EA to chaos control [16], [17] in order 
to reach the better results and decrease the influence 
of negative phenomenon which can occur in such a 
challenging task, which chaos control is. 
 
2. Problem design 
 
2.1. Problem selection and case studies 
The chosen example of a chaotic system was the one 
dimensional Logistic equation in form (1). This 
system is strongly dependent on value r and becomes 
chaotic for r > 3.57. 
 

( )nnn xrxx −=+ 11  (1) 
 
This work primarily consists of three case studies. 
All of them are focused on an estimation of three 
accessible control parameters for EDTAS control 
method to stabilize desired UPO, and a comparison 
of obtained results for used cost function. Desired 
UPOs are following: p-1 (a fixed point) in the first 
case, p-2 (higher periodic orbit – oscillation between 
2 values) in the second case and p-4 (also high 
periodic orbit - – oscillation between 4 values) in the 
last case. All simulations were 50 times repeated for 
each EA version. The control method – ETDAS in 
the discrete form suitable for logistic equation has 
the form (2). 
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where K and R are adjustable constants, F is the 
perturbation, S is given by a delay equation utilizing 
previous states of the system and m is the period of 
m-periodic orbit to be stabilized. The perturbation 

nF  in equations (2) may have an arbitrarily large 
value, which can cause diverging of the system 
outside the interval {-1.5, 1.5}. Therefore, nF  
should have a value between, maxF−  and maxF , and 
EA should find an appropriate value of this 
limitation to avoid diverging of the system. 
 
2.2. The basic cost function 
The proposal of the basic cost function (CF) is in 
general based on the simplest CF, which could be 
used only for the stabilization of p-1 orbit. The idea 
was to minimize the area created by the difference 
between the required state and the real system output 
on the whole simulation interval – τi.  
But another cost function had to be used for 
stabilizing of the higher periodic orbit. It was 
synthesized from the simple CF and other terms were 
added. In this case, it is not possible to use the 
simple rule of minimizing the area created by the 
difference between the required and actual state on 
the whole simulation interval – τi, due to the many 
serious reasons, for example: degrading of the 
possible best solution by phase shift of periodic 
orbit.  
This CF, is in general based on searching for desired 
stabilized periodic orbit and thereafter calculation of 
the difference between desired and found actual 
periodic orbit on the short time interval - τs (approx. 
20 - 50 iterations) from the point, where the first 
min. value of difference between desired and actual 
system output is found. Such a design of CF should 
secure the successful stabilization of p-1 and higher 
periodic orbit anywise phase shifted. The CFBasic has 
the form (3). 
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where: TS - target state, AS - actual state 

τ1 - the first min. value of difference 
between TS and AS 

 τ2 – the end of optimalizing interval (τ1+ τs) 
 penalization1= 0 if τi - τ2 ≥ τs;  
 penalization1= 10*( τi - τ2) if τi - τ2 < τs  

(i.e. late stabilization) 
 

2.3. The advanced targeting cost function 
It was necessary to modify the definition of CF in 
order to decrease the average number of iteration 
required for the successful stabilization and 
avoidance of any associated problem. The CFBasic is 
suitable for adding some term of penalization for 
slowly stabilizing solutions, thus it was modified for 
the use of all required UPOs. The CF value is 
multiplied by the number of iterations (NI) of the 
first found minimal value of difference between 
desired and actual system output (i.e. the beginning 
of fully stabilized UPO). To avoid problems 
associated with CF returning value 0 and to put the 
penalization to similar level as the non-penalized CF 
value, the small constant (SC) is added to CF value 
before penalization (multiplying by NI). 
Generally, there exist two possible approaches for 
defining the SC value. The first one capitalizes the 
previous simulation results with CF basic and 
experiences, whereas the second approach uses the 
automatically computed value. 
The next two proposals of CF design are based on 
the second approach, which should avoid any 
problems associated with defining the value of small 
constant, SC in advance (especially for stabilization 
of higher periodic orbit). The SC value (5) is 
computed with the aid of power of non-penalized 
basic part of CF (4).  
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SC = 10ExpCF (5) 
 
In general, there exists two possible ways for 
applying the multiplication by number of iterations 
required for stabilization (NI). The first version of 
final design of targeting CF (CFT1 - ADV) has the form 
(6). Here the sum of basic part of CF and 
automatically computed SC is multiplied by NI. 
Finally, to avoid the problems with fast stabilization, 
only for limited range of initial conditions, the final 
CF value is computed as a sum of n repeated 
simulations for different initial conditions. 
Consequently, the EA should find the robust 
solutions securing the fast targeting into desired 
behavior of system for almost any initial conditions. 
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where: xinitial is from the range 0.05 – 0.95 and uses 
step 0.1. 
In the second version of targeting CF (CFT2 - ADV), 
there is only a slight change in comparison with the 
previous proposal. Here the number of steps for 
stabilization (NI) multiplies only the small constant 
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(SC) which is counted in the same way as in the 
previous case (5). This version of targeting CF (CFT2 

- ADV) has the form (7). 
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2.3. The advanced targeting cost function 
The difference between the proposed CFs can be 
clearly seen in Figures 1 and 2, which shows the 
dependence of CF values on the adjustable 
parameter K. Remaining parameters were set at the 
best values reached in optimizations; consequently 
the two-dimensional diagram always shows the 
section of global minimum. From these figures, it is 
obvious as to how a small change in the CF design 
can influence the nonlinearity and unpredictability of 
CF surface. 
 

 
Fig. 1. Dependence of CF value on parameter K, p-2 

orbit, xinitial = 0.8, CFT1-ADV, R = 0.24, maxF = 0.21 

 
Fig. 2. Dependence of CF value on parameter K, p-2 

orbit, xinitial = 0.8, CFT2-ADV, R = 0.19, maxF = 0.28 
 
4. Optimization algorithm 
For the experiments described here, stochastic 
optimization algorithm SOMA [18], has been used. 
It was chosen because it has been proven that this 
algorithm has the ability to converge towards the 
global optimum. SOMA works with groups of 
individuals (population) whose behavior can be 
described as a competitive – cooperative strategy. 

The construction of a new population of individuals 
is not based on evolutionary principles (two parents 
produce offspring) but on the behavior of social 
group, e.g. a herd of animals looking for food. This 
algorithm can be classified as an algorithm of a 
social environment. To the same group of 
algorithms, particle swarm algorithm can also be put 
in, sometimes called swarm intelligence. In the case 
of SOMA, no velocity vector works as in particle 
swarm algorithm, only the position of individuals in 
the search space is changed during one generation, 
here called ‘Migration loop’. 
The rules are as follows: In every migration loop, the 
best individual is chosen, i.e. individual with the 
minimum cost value, which is called “Leader”. An 
active individual from the population moves in the 
direction towards Leader in the search space. At the 
end of the movement, the position of the individual 
with minimum cost value is chosen. If the cost value 
of the new position is better than the cost value of an 
individual from the old population, the new 
individual appears in new population. Otherwise the 
old one remains for the next migration loop. 
 
5. Experimental results 
Four versions of SOMA were used for all 
simulations. (See Table 1). See also Table 2 for 
parameter set up of EA.  
Parameters for the optimizing algorithm were set up 
in such a way in order to reach the same value of 
maximal CF evaluations for all used versions. Each 
version of SOMA has been applied 50 times in order 
to find the actual optimum. 
The primary aim here is not to show which version is 
better or worse but to show that the EA can in reality 
be used for deterministic chaos control when the 
targeting cost function is properly defined. Here is 
the list of desired UPOs  for r = 3.8: 
p-1 (fixed point): xF = 0.73842 
p-2 orbit: x1 = 0.3737, x2 = 0.8894 
p-4 orbit: x1 = 0.3038, x2 = 0.8037, x3 = 0.5995,  
x4 = 0.9124. 
 
The optimization interval for p-1 orbit was τi = 100 
iterations, for higher periodic orbits (p-2 and p-4) it 
was mostly τi = 150 iterations. 
The ranges of all estimated parameters were these: 

-2 ≤ K ≤ 2 , 0 ≤ maxF  ≤ 0.5 and 0 ≤ R ≤ 0.99 
 
The best solution for each version of SOMA are 
shown in Tables 3 – 5 together with other 
optimization results like average number of 
iterations required for successful stabilization for 50 
repeated simulations (Avg. IStab). The figures 3 – 11 
shows the simulation of the best individual solutions 
for the uniformly distributed initial conditions in the 
range  
0 < xinitial < 1 (100 samples)  
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Table 1: Used versions of SOMA 
Index Algorithm / Version 
1 SOMA AllToOne  
2 SOMA AllToRandom 
3 SOMA AllToAll 
4 SOMA AllToAllAdaptive

 
Table 2: Parameter Settings for SOMA 

Parameter ATO / ATR ATA / 
ATAA

PathLength 3 3 
Step 0.33 0.33
PRT 0.1 0.1 
PopSize 25 10
Migrations 25 7 
Max. CFE 5400 5670

 
5.2. Control of chaos, p-1 orbit 
For the best individual solutions given by CFT1-ADV 
(SOMA ATO) and CFT2-ADV (SOMA ATO), please 
refer to Table 3. From the series of complex 
simulations depicted in Figures 3 – 5, it is obvious, 
that the control parameters estimated in the 
optimizations ensured very fast and precise reaching 
of a desired state for any initial conditions. 
 
Table 3: Results for p-1 orbit, CFT1-ADV and CFT2-ADV 

CF Version CFT1-ADV CFT2-ADV 
K -0.9351 -0.9336
Fmax 0.4888 0.4957 
R 0.4990 0.4994 
CF Val. 2.57 10-14 2.54 10-14 
Avg. IStab 37 34 

 
Fig. 3. Best solution: p-1 orbit, CFBasic, SOMA ATR 

 
Fig. 4. Best sol.: p-1 orbit, CFT1-ADV, SOMA ATO 

 

 
Fig. 5. Best sol.: p-1 orbit, CFT2-ADV, SOMA ATO 

 
5.3. Control of chaos, p-2 orbit 
This case is focused on the stabilization of p-2 orbit.  
The best results given by CFT1-ADV (SOMA ATR) 
and CFT2-ADV (SOMA ATO) are given in Table 4. 
The outputs of simulations are depicted in Figures 6 
- 8. 
The results given by CFT1-ADV show the following 
attributes: rapid achievement of desired UPO in 
comparison with CFBasic (See table 6) – only 13 
iterations were required for the stabilization of the 
best solution, together with very poor performance 
of EA, i.e. the proportion of the solutions with either 
perfect stabilization or temporary or possibly none at 
all. Also, relatively considerable period doubling or 
oscillating in the close neighborhood of desired UPO 
arose (Fig 7). 
In case of CFT2-ADV, the two main above mentioned 
problems with period doubling (i.e. low-quality 
stabilization) and very poor performance of EAs in 
finding the stabilizing securing solutions were 
noticeably suppressed  
 
Table 4: Results for p-2 orbit, CFT1-ADV and CFT2-ADV 

CF Version CFT1-ADV CFT2-ADV 
K 0.4236 0.4093 
Fmax 0.2086 0.2824 
R 0.2421 0.1949 
CF Val. 15.0221 0.6392 
Avg. IStab 60 66 

 

 
Fig. 6. Best solution: p-2 orbit, CFBasic, SOMA ATR 
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Fig. 7. Best sol.: p-2 orbit, CFT1-ADV, SOMA ATA 

 

 
Fig. 8. Best sol.: p-2 orbit, CFT2-ADV, SOMA ATO 

 
5.4. Control of chaos, p-4 orbit 
See Table 5 for the results of this optimization. The 
simulations of the best individual solutions are 
depicted in Figures 9 - 11.  
As a conclusion of this case study, it is possible to 
say that also in the case of p-4 orbit and 
optimizations by means of CF T1-ADV the 
phenomenon of faster targeting of desired UPO 
(only 31 iterations for the best individual solution) 
for wide range of initial conditions occurs at the cost 
of very poor performance of EA (only 2% of given 
solutions led to stabilization). 
In case of CFT2-ADV, the presented results show 
positive features as in case of p-2 orbit and from the 
comparison with CFBasic (Fig. 9 – not successful 
stabilization), it follows that the stabilization was 
reached precisely. 
The results for CFT1-ADV were for the first view better 
(Fig. 10 and 11) but in the case of CFT2-ADV more 
than 50% of samples were stabilized within the first 
150 iterations. This is apparent from the notable 
difference of Avg. IStab values  
 
Table 5: Results for p-4 orbit, CFT1-ADV and CFT2-ADV 

CF Version CFT1-ADV CFT2-ADV 
K -0.6394 -0.5132 
Fmax 0.1107 0.1249 
R 0.7255 0.5960 
CF Val. 192.0886 2.1906 
Avg. IStab 418 194 

 

 
Fig. 9. Best solution: p-4 orbit, CFBasic, SOMA ATO 

 

 
Fig. 10. Best sol.: p-4 orbit, CFT1-ADV, SOMA ATR 

 

 
Fig. 11. Best sol.: p-4 orbit, CFT2-ADV, SOMA ATAA 
 
6. Investigation on results of chaos control 
This section presents an accumulation of research 
[15] and the results presented here. Please refer to 
Table 6 for the comparison of average number of 
iterations required for stabilization, which was 
elaborated for five CFs and all desired UPOs. The 
infinity value and number in braces represents the 
case, where the stabilization was reached only for the 
best solution and this solution failed within complex 
simulation. Here, a gradual decrease of average IStab 
value together with development and testing of 
complex targeting cost functions can be clearly seen. 
The first CF Basic gives satisfactory results and can 
be used wherever the good quality of stabilization is 
expected and the speed of stabilization and 
“universality of this solution” for wider range of 
initial conditions are not decisive.  
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In case of targeting cost functions, the results for p-1 
orbit are significantly better, on the other hand the 
slightly better results for higher periodic orbits were 
achieved at the cost of arising of problem with worse 
performance of EAs and obtaining of solutions with 
only temporary stabilization or none at all. This 
negative phenomenon culminates in case of CFT1-

ADV. Finally, CFT2-ADV design suppresses all 
mentioned problems and gives excellent 
performance from the point of view of quickness and 
quality of stabilization for any initial conditions. 
 

Table 6: Comparison of results for five CFs 
UPO p-1 p-2 p-4 
CF Basic 97 123 ∞ (197) 
CF Targ1 33 112 ∞ (195) 
CF Targ2 31 112 ∞ (184) 
CF Targ1 Adv. 37 60 418 
CF Targ2 Adv. 34 66 194 

 
8. Conclusion 
From the optimization results it follows, that they are 
extremely sensitive to the construction of used CF 
and any small change in the design of CF can cause 
radical improvement of the system behavior (as in 
case of CF Targ2 Advanced), but of course, on the 
other hand can cause worsening of observed 
parameters and behavior of chaotic system as well. 
The results for CF Targ1 were for the first view 
satisfactory, but two very momentous problems 
arose – period doubling and very poor performance 
of EAs. These problems uncovered hidden non-
optimal structure of CF Targ1. 
In the last proposal of CF Targ2, there were only 
slight changes in CF design, but from the presented 
results it can be seen, how such a small change can 
influence the performance of a controlled system, 
especially when it is an extremely sensitive chaotic 
system. CF Targ2 advanced gives excellent results 
for simulations with wide range of initial conditions 
and seem to be the choice for the task of finding of 
“universal and robust solution”. The problems with 
poor EA performance and period doubling were 
mostly suppressed here. The only disadvantage of 
this proposal is the relatively big computational-time 
demands. 
According to all results showed here it is planned 
that the main activities will be focused on testing of 
evolutionary deterministic chaos control in 
continuous-time and high-order systems and finally 
testing of evolutionary real-time chaos control. 
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