
Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2009, Article ID 845080, 12 pages
doi:10.1155/2009/845080

Research Article

Investigation on Evolutionary Synthesis of Movement Commands

Zuzana Oplatková and Ivan Zelinka

Faculty of Applied Informatics, Tomas Bata University in Zĺın, Nad Stranemi 4511, 762 72 Zĺın, Czech Republic

Correspondence should be addressed to Zuzana Oplatková, oplatkova@fai.utb.cz

Received 27 February 2008; Revised 24 November 2008; Accepted 3 February 2009

Recommended by Gaby Neumann

This paper deals with usage of an alternative tool for symbolic regression—analytic programming which is able to solve various
problems from the symbolic domain, as well as genetic programming and grammatical evolution. This paper describes a setting
of an optimal trajectory for a robot (originally designed as an artificial ant on Santa Fe trail) solved by means of analytic
programming. Firstly, main principles of analytic programming are described and explained. The second part shows how analytic
programming was used for the application of finding a suitable trajectory step by step. Because analytic programming needs
evolutionary algorithms for its run, three evolutionary algorithms were used—self-organizing migrating algorithm, differential
evolution, and simulated annealing—to show that anyone can be used. The total number of simulations was 150 and results show
that the first two used algorithms were more successful than not so robust simulated annealing.

Copyright © 2009 Z. Oplatková and I. Zelinka. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

The term “symbolic regression” represents a process during
which measured data is fitted and a suitable mathematical
formula is obtained in an analytical way. This process is well
known for mathematicians. It is used when a mathematical
model of unknown data is needed. For long time, symbolic
regression was a domain of humans but in the last few
decades, computers have gone to foreground of interest
in this field. Firstly, the idea of symbolic regression done
by means of computer was proposed by Koza in genetic
programming (GP) [1–3]. The other two approaches are
grammatical evolution (GE) developed by Ryan et al. [4–6]
and here described analytic programming (AP) designed in
[7–9].

Genetic programming was the first tool for symbolic
synthesis of the so-called programs done by means of
computer instead of humans. The main idea comes from
genetic algorithms (GAs) [10], which Koza uses in his GP.
The ability to solve very difficult problems was proved many
times, and hence, GP today can be applied, for example,
to synthesize highly sophisticated electronic circuits, robot
trajectory, biochemistry problems, and many others [2].

The other tool is GE which was developed in the last
decade of 20th century by Conor Ryan. Gramatical evolution

has one advantage compared to GP which is the ability to
use arbitrary programming language not only LISP as in the
case of the cannonical version of GP. In contrast to other
evolutionary algorithms, GE was used with a few search
strategies with a binary representation of the populations [5],
as well as with other algorithms like those in [11, 12]. Other
2 interesting investigations using symbolic regression were
carried out by Johnson [13] working on artificial immune
systems and probabilistic incremental program evolution
(PIPE), the work in [14] generates functional programs
from an adaptive probability distribution over all possible
programs.

This contribution demonstrates the use of a method
which is independent of computer platform, programming
language, and can use any evolutionary algorithm (as
demonstrated in [7–9]) to find an optimal solution of the
required task.

2. Analytic Programming

2.1. Description. Basic principles of the AP were developed
in 2001. Until that time, mainly GP and GE existed.
GP uses genetic algorithms while AP can be used with
any evolutionary algorithm, independently of individual

2 Modelling and Simulation in Engineering

representation. To avoid any confusion based on the use of
names according to the used algorithm, the name Analytic
programming was chosen, because AP stands for synthesis of
analytical solution by means of evolutionary algorithms [7–
9].

AP was inspired, in general, by numerical methods in
Hilbert spaces and by GP. Principles of AP [9] are somewhere
between these two philosophies. From GP, an idea of
evolutionary creation of symbolic solutions is taken into
AP while from Hilbert spaces, an idea of synthesis of more
complicated functions from elementary functions is adopted
into AP. Analytic programming as well as GP is based on the
set of functions, operators, and so-called terminals, which are
usually constants or independent variables like

(i) functions: sin, tan, And, Or, and so forth,

(ii) operators: +, −, ∗, /, dt, and so forth,

(iii) terminals: 2.73, 3.14, t, and so forth.

All these “mathematical” objects create a set which AP
tries to synthesize the appropriate solution from. The set of
mathematical objects are functions, operators, and so-called
terminals (usually constants or independent variables). All
these objects are mixed together as shown in Figure 1and
consist of functions with different number of arguments.
Because of the variability of the content of this set, it is
called for article purposes general functional set (GFS). The
structure of GFS is nested, that is, it is created by subsets
of functions according to the number of their arguments.
The content of GFS is dependent only on the user. Various
functions and terminals can be mixed together. For example,
GFSall is a set of all functions, operators, and terminals,
GFS3arg is a subset containing functions with only three
arguments, GFS0arg represents only terminals, and so forth.

This nested structure is necessary that the main principle
of AP can work without any difficulties. The core of AP
is based on discrete set handling, proposed in [15, 16]
(see Figure 2). Discrete set handling (DSH) shows itself as
a universal interface between EA and symbolically solved
problem. That is why AP can be used almost by any
evolutionary algorithm.

Briefly said, DSH works with integer indexes which
represent numerical or nonnumerical expressions (oper-
ators, functions, etc.) in a discrete set. This index then
serves like a pointer into a discrete set. Based on that,
appropriate objects are chosen for cost function evaluation
[16]. During an evolutionary process, only indexes are used
for all evolutionary operations. Objects from the discrete set
are used (by means of integer index) only in cost function,
whereas according to integer index, a symbolic structure is
synthesized and consequently evaluated.

2.2. Mapping Method in AP. The nested structure presence in
GFS is vitally important for AP. It is used to avoid synthesis
of pathological programs, that is, programs containing
functions without arguments, and so forth. Performance of
AP is, of course, improved if functions of GFS are expertly
chosen based on experiencies with solved problem.

The important part of the AP is a sequence of math-
ematical operations which are used for program synthesis.
These operations are used to transform an individual of a
population into a suitable program. Mathematically said,
it is mapping from an individual domain into a program
domain. This mapping consists of two main parts. The first
part is called discrete set handling (DSH) and the second
one is security procedures which do not allow synthesizing
pathological programs.

Discrete set handling proposed in [15, 16] is used to cre-
ate an integer index, which is used in the evolutionary process
like an alternative individual handled in EA by method of
integer handling. The method of DSH, when used, allows
handling arbitrary objects including nonnumeric objects like
linguistic terms (hot, cold, dark, etc.), logic terms (true,
false), or other user defined functions. In the AP, DSH is used
to map an individual into GFS and together with security
procedures (SP) creates the aforementioned mapping which
transforms arbitrary individual into a program. Individuals
in the population consist of integer parameters, that is, an
individual is an integer index pointing into GFS.

Analytic programming is basically a series of function
mapping. Figure 3 demonstrated an artificial example of
how a final function is created from an integer individual.
Number 1 in the position of the first parameter of integer
index means that the operator “+” from GFSall is used.
Because the operator “+” has to have at least two arguments,
next two index pointers 6 (sin from GFSall) and 7 (cos
from GFSall) are dedicated to this operator as its arguments.
Both functions, sin and cos, are one-argument functions
so the next unused pointers 8 (tan from GFSall) and 9
(t from GFSall) are dedicated to sin and cos function.
Because as an argument of cos variable t is used, this part
of resulting function is closed (t is zero-argument) in its
AP development. One-argument function tan remains, and
because there is one unused pointer 9 tan is mapped on “t”
which is on the 9th position in GFS.

To avoid synthesis of pathological functions a few secu-
rity “tricks” are used in AP. The first one is that GFS consists
of subsets containing functions with the same number of
arguments. Existence of this nested structure is used in
the special security subroutine which is measuring how far
the end of individual is, and according to it, objects from
different subsets are selected to avoid pathological function
synthesis. Precisely, if more arguments are desired than
possible (the end of the individual is near), function will be
replaced by other function with the same index pointer from
subset with lower number of arguments. For example, it may
happen that the last argument for one argument function
will not be a terminal (zero-argument function). If pointer
is bigger than length of subset, that is, the pointer is 5 and
is used GFS0arg, then the element is selected according to
element = pointer value mod number of elements in GFS0arg.
In this example, case-selected element would be variable t
(see GFS0arg in Figure 1).

GFS needs to be constructed not only from clear mathe-
matical functions as demonstrated but also from other user-
defined functions, which can be used, for example, logical

Modelling and Simulation in Engineering 3

GFSall

BetaRegularized

LerchPhi

GFS2arg

mod

−
+

∗
/

GFS1arg

cos

sin GFS0arg

x t

GFSall = GFS3arg = {LerchPhi, BetaRegularized, +,−, /,∗ , cos, tan, sin,

log, x, t}
GFS2arg = {+,−, /,∗ , cos, tan, sin, log, x, t}
GFS1arg = {cos, tan, sin, log, x, t}
GFS0arg = {x, t}

Figure 1: General function set (GFS).

Individual {x1, x2, x3, x4, x5, x6, . . . }

Discrete set {−1, 44.35, 99, 231, True, False,−65.44,−0.01, . . .}

Integer index {1, 2, 3, 4, 5, 6, 7, 8, . . .}

No Yes

Cost function Fcost(x1, . . . , x4, . . .) = x1

√
x3

sin(x2)
x4 + · · ·

Figure 2: Discrete set handling.

Individual parameters {1, 6, 7, 8, 9, 9} are used by AP
like pointers into GFS and through series of mappings

m1-m5 final formula sin(tan(t)) + cos(t) is created

m1 m3 m5

Individual = {1, 6, 7, 8, 9, 9}

m2 m4

sin(tan(t)) + cos(t)

m1 m3 m5

GFSall = {+,−, /,∧ , d/dt, sin, cos, tan, t,Ω, mod, . . . }

m2 m4

Figure 3: Main principles of AP.

functions, functions which represent elements of electrical
circuits, or robot movement commands.

2.3. Versions of AP. Today, AP exists in three versions: APbasic,
APmeta, and APnf. In all three versions, the same sets of
functions, terminals, and so forth, as Koza use in GP [1–
3] are necessary for the program synthesis. APbasic works
as described earlier and the formulas do not contain any
constants. The second version (APmeta) is modified in the
sense of constant estimation. For example, when Koza uses
randomly generated constants in the so-called sextic problem
[3], AP uses only one (K), which is inserted into the formula
at various places by evolutionary processing. The function
can look as follows:

x − K
πK

. (1)

When the program is synthesized, then all “K” are indexed so
that K1, K2, . . . ,Kn are obtained from (2), and then all Kn are
estimated by second evolutionary algorithm, and the result is
in (3):

x − K1

πK2
, (2)

x − 1.289
π−112

. (3)

Because EA “works under” EA (i.e., EAmaster�
program� K indexing� EAslave� estimation of Kn),
this version is called AP with metaevolution—APmeta. As this

4 Modelling and Simulation in Engineering

version was quite time-consuming, another modification
of APmeta was done extending the second version by
estimation of K . It is done by suitable methods of nonlinear
fitting (APnf). This method has shown the most promising
performance when unknown constants are present.

2.4. Security Procedures. Security procedures (SPs) are in the
AP as well as in GP, used to avoid various critical situations.
In the case that AP security procedures were not developed
for AP purposes after all, but they are mostly integrated parts
of AP. However sometimes they have to be defined as a part
of cost function, based on kind of situation (e.g., situation 2,
3, and 4, etc., see what follows). Critical situations are like

(1) pathological function (e.g., without arguments, self-
looped),

(2) functions with imaginary or real part (if not
expected),

(3) infinity in functions (e.g., dividing by 0),

(4) “frozen” functions (e.g., extremely long time to get a
cost value: hours).

Simply as an SP can be regarded here mapping from
an integer individual to the program which is checked for
how far the end of the individual is, and based on this
information, a sequence of mapping is redirected into a
subset with lower number of arguments. This satisfies that no
pathological function will be generated. Another activities of
SP are integrated part of cost function to satisfy items 2–4,
and so forth.

2.5. Similarities and Differences. Because AP was partly
inspired by GP, then between AP, GP, and GE are some
differences as well as some logical similarities. A few of the
most important ones are as follows.

I. Similarity

(i) Synthesized programs: AP as well as G0P and
GE is able to do symbolic regression in gen-
eral point of view. It means that output of
AP is according to all important simulations [7–
9] similar to programs from GP and GE (see
http://www.fai.utb.cz/people/zelinka/ap).

(ii) Functional set: APbasic operates in principle on the
same set of terminals and functions as GP or GE.

II. Differences

(i) APmeta or APnf use universal constant K (difference)
which is indexed after program synthesis.

(ii) Individual coding: coding of an individual is dif-
ferent. Analytic programming uses an integer index
instead of direct representation as in canonical GP.
Grammatical evolution uses binary representation of
an individual, which is consequently converted into
integers for mapping into programs by means of BNF
[4].

(iii) Individual mapping: AP uses discrete set handling,
[13] while GP in its fundamental form uses direct
representation in Lisp [1] and GE uses grammar-
Backus-Naur form (BNF) [4].

(iv) Constant handling: GP uses a randomly generated
subset of numbers, constants, GE utilises user-
determined constants and AP uses only one constant
K for APmeta and APnf, which is estimated by other
EA or by nonlinear fitting.

(v) Security procedures: to guarantee synthesis of non-
pathological functions, procedures are used in AP
which redirect the flow of mapping into subsets of
a whole set of functions and terminals according
to the distance to the end of the individual. If
a pathological function is synthesized in GP, then
synthesis is repeated. In the case of GE, when the end
of an individual is reached, then mapping continues
from the individual beginning, which is not the
case of AP. It is designed so that a nonpatholog-
ical program is synthesized before the end of the
individual is reached (maximally when the end is
reached).

2.6. Selected Solved Problems. During AP development and
research simulations, a lot of various kinds of programs
have been synthesized. In (2) a mathematical formula is
shown to demonstrate complexity of synthesized formulas,
which were randomly generated amongst 1000 formulas
to check if the final structure is free of pathologies (i.e.,
if all functions have the right number of arguments,
etc.). In this case, no attention was paid to mathematical
reasonability of the following test programs based on
clear mathematical functions. In what mentioned earlier,
a different approach to the symbolic regression called
analytic programming was described. Based on its results and
structure, it can be stated that AP seems to be a universal
candidate for symbolic regression by means of different
search strategies. Problems on which AP was utilised were
selected from test and theory problems domain as well
as from real-life problems and are shown in following
examples.

(i) Random synthesis of function from GFS, 1000 times
repeated: the aim of this simulation was to check
if pathological function can be generated by AP.
In this simulation, randomly generated individuals
were created and consequently transformed into
programs and checked for their internal structure. No
pathological program was identified [7].

(ii) sin(t) approximation was repeated 100 times. Here
AP was used to synthesize the program function
sin(x) fitting [7].

(iii) || cos(t)| + sin(t)| approximation was repeated 100
times, the same as in the previous example. Main
aim was again fitting of dataset generated by a given
formula [7].

Modelling and Simulation in Engineering 5

(iv) Solving of ordinary differential equations (ODE):
u”(t) = cos(t), u(0) = 1, u(π) = −1, u’(0) = 0, u’(π) =
0, was repeated 100 times, in that case AP was looking
for suitable function, which would solve this case of
ODE [7].

(v) Solving of ODE: ((4 + x)u”(x))” + 600u(x) =
5000(x − x2), u(0) = 0, u(1) = 0, u”(0) = 0, u”(1)
= 0, was repeated 5 times (due to longer time of
simulation in the Mathematica environment). Again
as in the previous case, AP was used to synthesize
a suitable function-solution of this kind of ODE.
This ODE was used from and represents a civil-
engineering problem in reality [7].

(vi) Boolean even and symmetry problems according to
[1] for comparative reasons [9].

(vii) Sextic and Quintic problems [8].

(viii) Simple neural network synthesis by means of AP: a
simple few layered NN synthesis was tested by AP
[17].

Such elementary objects are usually simple mathematical
operators (+, −, ∗, . . .), simple functions (sin, cos, And,
Nor, etc.), user-defined functions, and so forth. Output of
symbolic regression is a more complex “object” (formula,
function, command, etc.), solving a given problem like data
fitting of so-called Sextic and Quintic problem described
by (4), [2, 8], randomly synthesized function (5) [8], as
well as Boolean problems of parity and symmetry solution
(basically logical circuits synthesis) (6) [2, 9]. However,
(4)–(6) mentioned here are just only a few samples of
numerous repeated experiments done by AP and are used
to demonstrate how complex structures can be produced by
symbolic regression in general sense for different problems:

x

(
K1 +

(
x2K3

)
K4
(
K5 + K6

)
)
∗ (− 1 + K2 + 2x

(− x − K7
))

,

(4)

√
t
(

1
log(t)

)sec−1(1.28)

logsec−1(1.28)(sinh(sec(cos(1)))), (5)

Nor[(Nand[Nand[B‖B, B&&A], B])&&C&&A&&B,

Nor[(!C&&B&&A‖!A&&C&&B‖!C&&!B&&!A)&&

(!C&&B&&A‖!A&&C&&B‖!C&&!B&&!A)‖
A && (!C&&B&&A‖!A&&C&&B‖!C&&!B&&!A),

(C‖!C&&B&&A‖!A&&C&&B‖!C&&!B&&!A)&&A]].

(6)

The rest of this article is an investigation on evolutionary
synthesis of robot commands, which is well known in genetic
programming as a Santa Fe trail for an artificial ant.

3. Problem Design

3.1. Santa Fe Description. The Santa Fe trail, demonstrated in
Figure 4, was chosen from [18] to make a comparative study

X X X X
X
X
X
X
X X X X X X X X X X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
XXXXXXXXXXXX

X
X
X
X
X
X X X X X X X

X
X
X X X X X X X X X X

X
X
X
X
X
X
X
X
X
X
X
X X X X X

X
X
X
X
X
X
X
X
X
X XX X X

X
X
X X X X X X

X
X
X
X
X
X
X
X
X
X
X
XXXXXXX

X
X
X
X X XX X

X

X
XXXXX

X

X

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 4: Santa Fe trail.

with the same problem which was solved by Koza in genetic
programming [1].

The aim of the task is that an artificial ant should go
through defined trail and eat all food which is there. From
a simple point of view, it can be looked at it as on robot
movements on some trail. Robot trajectory is, of course, very
complex task but the more complex behaviour can be added
later in further simulations.

The Santa Fe trail is defined as a 32× 31field where food
is set out. In Figure 4, a black field is food for the ant. The
gray one is basically the same as a white field but, for clarity,
was used the gray color. The gray fields represent obstacles
(fields without food on the road) for the ant. If there would
not be these holes, the ant could go directly through the
way. It would be enough to go and see before ant if there
is food. If yes, ant would go straight and eat the bait. If not,
it would turn around and see where food is, and the cycle
would repeat till the ant would eat the last bait.

In the real world, robots have obstacles in their moving.
Therefore, also in this case, such approach was chosen. The
first problem which ant has to overcome is the simple hole
(position (8,27) in Figure 4). Second one is the two holes
in the line (positions (13,16) and (13,17)), or three holes
((17,15), (17,16), (17,17)). Next problem is the holes in the
corners: one (position (13,8)) , two ((1,8), (2,8)), and three
holes ((17,15), (17,16), (17,17)).

3.2. Set of Functions. The set of functions used for move-
ments of the ant is as follows. As a set of variables GFS0arg,
that is, in the case of this article there are functions which
provide movements of an ant, without any argument which
could be add during the process of evolution.

The set consist of

(i) GFS0arg = {Left,Right, Move},

6 Modelling and Simulation in Engineering

where
GFS0arg: a set of variables and terminals, zero argument

functions GFS0arg,
Left: function for turning around in the anticlockwise

direction,
Right: function for turning around in the clockwise

direction,
Move: function for moving straight and if bait is in the

field where the ant is moved, it is eaten.
This set of functions is not enough to make successfully a

desired task. More functions are necessary, then a GFS2 and
a GFS3 were set up:

(ii) GFS2 = {IfFoodAhead, Prog2},
(iii) GFS3 = {Prog3},

where the number in GFS means the arity of the functions
inside, that is, the number of arguments which are needed
to be evaluated correctly. Arguments are added to those
functions during evolution process, as mentioned earlier in
the description of AP.

IfFoodAhead is a decision function: the ant controls the
field in front of it, and if there is food, the function in the
field for truth argument is executed; otherwise, function in
false position is performed.

Prog2 and Prog3 are the same function in the principle.
They do 2 or 3 functions in the same time. These two
functions were originally defined also in Koza’s approach but
in AP, it is necessary because of the structure of generating
the program.

3.3. Fitness Function. The aim of the ant is to eat all food
on the way. There are 89 baits. This is so called raw fitness,
and the value of cost function (7) is calculated as a difference
between raw fitness and a number of baits eaten by an ant
[1], which went through the grid according to just generated
way:

CV = 89−Number of Food, (7)

where Number of Food is number of eaten baits by an ant
according to synthesized way.

The aim is to find such formula whose cost value is equal
to zero. To obtain an appropriate solution, two constraints
should be set up into a cost function. One is a limitation
concerned to the number of steps. It is not desired to the ant
to go field by field in the grid. A requirement to the fastest
and the most effective way is desired. Then a limit of steps was
equal to 600. According to the original assignment, 400 steps
should be sufficient, but as the work in [19], Koza’s optimal
solution was as in (8). However, as simple solution showed,
545 steps are necessary for an ant to eat all food in the Santa
Fe trail.

IfFoodAhead[Move, Prog3[Left, Prog2[IfFoodAhead

[Move, Right], Prog2[Right, Prog2[Left,

Right]]], Prog2[IfFoodAhead[Move, Left], Move]]].
(8)

Table 1: Setting of SOMA.

Parameter Value

PathLength 3

Step 0.22

PRT 0.21

PopSize 200

Migrations 50

MinDiv -0.1

Individual length 50

Table 2: Setting of DE.

Parameter Value

NP 200

F 0.8

CR 0.2

Generations 700

Individual length 50

Functionality of (8) can be described in follows. If bait is in
front of the ant, it moves on the field and eats the food. If
there is nothing, it does the following 3 commands. If food
is in front of the ant it moves and eats the food, if not it
turns twice right. Next Prog2(Left, Right) is not necessary
there, this is the reason why all program takes 545 steps
instead of 404 in the case of no Prog2(Left, Right). Then
next control of food in front of ant is again, if yes ant moves
and eats the food. If not it turns left to the original direction
as it was at the beginning of the program. If the cycle is
somewhere interrupt (e.g., in the case of truth in the first
function IfFoodAhead), the cycle is repeated still from the
beginning until all food is not eaten or constrained steps are
not reached.

The second constraint could be concerned to the length
of the list of commands for an ant. The longer can cause
the more steps to reach all food is eaten. In this preliminary
study, this constraint was not set up, but in further studies, a
penalization concerned this constraint will be surely used.

4. Used Evolutionary Algorithm

In this paper, self-organizing migrating algorithm (SOMA),
differential evolution (DE), and simulated annealing (SA)
were used as an evolutionary algorithm. For detailed infor-
mation, see [15, 20, 21].

4.1. Differential Evolution (DE). Differential evolution is a
population-based optimization method that works on real-
number-coded individuals [20]. For each individual �xi,G in
the current generation G, DE generates a new trial individual
�x′i,G by adding the weighted difference between two randomly
selected individuals �xr1,G and �xr2,G to a third randomly
selected individual �xr3,G. The resulting individual �x′i,G is
crossed-over with the original individual �xi,G. The fitness of
the resulting individual, referred to as a perturbated vector
�ui,G+1, is then compared to the fitness of �xi,G. If the fitness of

Modelling and Simulation in Engineering 7

Table 3: Setting of SA.

Parameter Value

T 10 000

Tmin 0.000 01

α 0.986

MaxIter 1 500

MaxIterTemp 93

Individual length 50

Table 4: Cost function evaluation for SOMA, DE, and SA.

Cost function evaluation

SOMA DE SA

Minimum 3 396 4 030 2 697

Maximum 134 114 136 011 98 241

Average 61 966 66 620 50 142

Table 5: Number of commands.

Number of leaves (commands)

SOMA DE SA

Minimum 11 11 15

Maximum 50 50 50

Average 32 32 26

Table 6: Number of steps.

Number of steps

SOMA DE SA

Minimum 396 367 406

Maximum 606 604 605

Average 547 540 535

�ui,G+1 is greater than the fitness of �xi,G, �xi,G is replaced with
�ui,G+1, otherwise �xi,G remains in the population as �xi,G+1.

Differential evolution is robust, fast, and effective with
global optimization ability. It does not require that the
objective function is differentiable, and it works with noisy,
epistatic, and time-dependent objective functions.

4.2. Self-Organizing Migrating Algorithm (SOMA). SOMA
is a stochastic optimization algorithm that is modeled on
the social behaviour of cooperating individuals [15] It was
chosen because it has been proven that the algorithm has the
ability to converge towards the global optimum [15]. SOMA
works on a population of candidate solutions in loops called
migration loops. The population is initialized randomly dis-
tributed over the search space at the beginning of the search.
In each loop, the population is evaluated and the solution
with the highest fitness becomes the leader L. Apart from
the leader, in one migration loop, all individuals will traverse
the input space in the direction of the leader. Mutation,
the random perturbation of individuals, is an important
operation for evolutionary strategies (ESs). It ensures the
diversity among the individuals, and it also provides the
means to restore lost information in a population. Mutation

SOMA DE SA

SOMA DE SA

Algorithm

0

2

4

6

8

10

12

×104

C
os

t
fu

n
ct

io
n

ev
al

u
at

io
n

s

Figure 5: Graphical representation of minimal, maximal, and
average values of cost function evaluation for SOMA, DE, and SA.

10 20 30 40

Hit

0

2

4

6

8

10

12

×104

C
os

t
fu

n
ct

io
n

ev
al

u
at

io
n

s

Figure 6: Histogram of SOMA algorithm.

is different in SOMA compared with other ES strategies.
SOMA uses a parameter called PRT to achieve perturbation.
This parameter has the same effect for SOMA as mutation
has for GA.

The novelty of this approach is that the PRT Vector is
created before an individual starts its journey over the search
space. The PRT Vector defines the final movement of an
active individual in search space.

The randomly generated binary perturbation vector
controls the allowed dimensions for an individual. If an
element of the perturbation vector is set to zero, then
the individual is not allowed to change its position in the
corresponding dimension.

An individual will travel a certain distance (called the
PathLength) towards the leader in n steps of defined length.
If the PathLength is chosen to be greater than one, then the
individual will overshoot the leader. This path is perturbed
randomly.

4.3. Simulated Annealing (SA). Simulated annealing is one
of older algorithm compared to SOMA and DE. It was
introduced by Kirkpatrick et al. for the first time [21]. An
inspiration for developing this algorithm was annealing of

8 Modelling and Simulation in Engineering

10 20 30 40

Hit

0

2

4

6

8

10

12

×104

C
os

t
fu

n
ct

io
n

ev
al

u
at

io
n

s

Figure 7: Histogram of DE algorithm.

2 4 6 8 10 12 14

Hit

0

2

4

6

8

10
×104

C
os

t
fu

n
ct

io
n

ev
al

u
at

io
n

s

Figure 8: Histogram of SA algorithm.

metal. In the process, metal is heated up to temperature
near the melting point and then it is cooled very slowly. The
purpose is to eliminate unstable particles. In other words,
particles are moved towards an optimum energy state. Metal
is then in more uniform crystalline structure.

This approach was used in the case of simulated anneal-
ing including terms. It starts off from a randomly selected
point. Then, a certain number of points (depends on user)
are generated in the neighbourhood. The point with the best
cost value is selected to be the middle of new neighbourhood
(start point for a new loop). However, it is possible to accept
also worse value of cost function. The acceptance is based on
a probability which decreases with the number of iterations.
In the case that the best cost value is in the start point, this
one is chosen for the next loop. This approach is basic and
some other improvements were done during research in this
algorithm.

5. Experimental Results

The main idea is to show that SOMA, DE, and SA are able
to solve such problems of symbolic regression—setting a
trajectory—under analytic programming.

50 simulations were carried out for each algorithm (i.e.,
150 simulations in total). SOMA and DE have almost all

0.2 0.4 0.6 0.8 1

Cost function value

0

10

20

30

40

50

N
u

m
be

r
of

si
m

u
la

ti
on

s

Figure 9: Histogram of SOMA algorithm: the number of cases in
specific intervals of cost function values.

simulations with positive results; only one case in both
algorithms did not reach the extreme. SA was not so
successful, only 14 positive results. To show that AP is able
to work with arbitrary evolutionary algorithms, we suppose
to carry simulations out with genetic algorithms (GAs) and
other algorithms, and also parallel computing is intended
in this field. Data from all simulations were processed and
vizualised in [20, 22].

In simulations made for the purposes of this article,
following setting was used to run SOMA, DE, and SA
according to Tables 1, 2, and 3, and explanation of each
parameter symbol can be found in [15] (SOMA), [20] (DE),
and [21] (SA).

Firstly, the results show values of cost function
evaluations. This parameter shows good performance
of analytic programming. As can be seen in Table 4, the
lowest number of cost function evaluations equal 2697 for
SA and 3396 for SOMA. DE was also not so far with its 4030
cost function evaluations.

Figure 5 shows the same as Table 4, but in a graphical
way, where the diamond means the average value. As can be
seen, SA had the lowest average value. However, this might
be caused by only 14 cases which were included in the chart
while SOMA and DE had 49 positive cases.

Second indicator depicts histogram of successful hits and
the number of cost function evaluations for each hit (see
Figures 6, 7, and 8). Negative results are not included.

Another creation of histograms can be made from the
point of view of number of cases (axe y) which appeared in
some interval of cost function values (axe x). This approach
can be seen in Figures 9, 10, and 11. Here are all solutions,
also bad ones which are represented by higher value than
zero.

Next point, which we were interested in, was a number
of commands for the ant and number of steps required to
eat all baits (Tables 5 and 6). In Table 6, DE found a route
which is overcome in the least number of steps can be seen.
Sorted lists of pairs, commands and steps, are seen for all 3
algorithms in Table 7. As it is shown, it can be stated that
the smallest number of commands does not have to cause

Modelling and Simulation in Engineering 9

Table 7: Sorted numbers of steps and commands for all algorithms.

SOMA DE SA

Sorted by steps Sorted by commands Sorted by steps Sorted by steps Sorted by commands Sorted by steps

396 49 594 11 367 49 599 11 406 25 577 15

399 36 596 11 387 49 592 12 406 25 592 16

409 21 568 14 390 50 564 13 409 23 605 16

409 22 594 14 409 18 542 14 503 22 592 17

409 23 594 14 409 18 568 14 503 22 537 19

421 37 577 15 409 50 577 14 537 19 503 22

456 50 544 16 421 50 581 14 577 15 503 22

489 17 590 16 475 16 581 14 577 49 409 23

521 50 594 16 496 50 583 15 592 16 406 25

532 50 606 16 509 21 594 15 592 17 406 25

533 20 489 17 516 46 475 16 592 50 594 34

533 27 544 17 517 49 533 16 594 34 594 34

537 34 583 17 519 49 409 18 594 34 577 49

540 27 576 18 525 38 409 18 605 16 592 50

542 27 533 20 533 16 533 18

544 16 550 20 533 18 568 18

544 17 409 21 533 20 584 19

548 30 589 21 533 32 604 19

548 50 409 22 541 49 533 20

550 20 409 23 542 14 550 20

551 43 559 24 550 20 509 21

551 50 584 24 551 50 581 22

559 24 583 26 557 31 596 23

562 50 533 27 562 29 562 29

568 14 540 27 564 13 557 31

572 34 542 27 568 14 533 32

574 27 574 27 568 18 525 38

576 18 548 30 572 50 599 42

577 15 537 34 573 49 516 46

581 49 572 34 577 14 581 47

581 50 399 36 581 14 367 49

583 17 421 37 581 14 387 49

583 26 551 43 581 22 517 49

584 24 603 47 581 47 519 49

589 21 396 49 583 15 541 49

590 16 581 49 584 19 573 49

592 50 596 49 588 50 589 49

594 11 604 49 589 49 591 49

594 14 606 49 591 49 595 49

594 14 456 50 592 12 597 49

594 16 521 50 594 15 601 49

594 50 532 50 595 49 390 50

596 11 548 50 595 50 409 50

596 49 551 50 596 23 421 50

601 50 562 50 597 49 496 50

603 47 581 50 599 11 551 50

604 49 592 50 599 42 572 50

606 16 594 50 601 49 588 50

606 49 601 50 604 19 595 50

10 Modelling and Simulation in Engineering

2 4 6 8

Cost function value

0

10

20

30

40

50

N
u

m
be

r
of

si
m

u
la

ti
on

s

Figure 10: Histogram of DE algorithm: the number of cases in
specific intervals of cost function values.

the smallest number of steps. Vice versa, the small number of
steps does not mean the small set of commands.

Figure 12 depicts that the ant went through all fields; the
white “X” shows fields which were attended by the ant. The
notation (9) contains a set of rules for the ant how to go
successfully through the trail. In (10), the whole description
of the route can be seen where Ea, So, We, and No mean
east, south, west, and north (which cardinal point the ant is
turned into). The numbers in brackets are positions on the
grid:

IfFoodAhead[Move, IfFoodAhead[Move, Prog2[Prog2

[Right, IfFoodAhead[Prog2[IfFoodAhead[IfFoodAhead

[Move, Move], Move], Move], Prog3[IfFoodAhead[Move,

IfFoodAhead[Prog3[Right, Right, Prog2[Left,

Prog2[IfFoodAhead[Prog2[Prog2[Left, Move], Right],

IfFoodAhead[Move, Left]], Prog2[IfFoodAhead[Move,

Move], Prog2[IfFoodAhead[Move, Right], Right]]]]],

Left]], Left, IfFoodAhead[Move, Right]]]], Move]]]
(9)

{{32, 1},{32, 2},{32, 3},{32, 4},{So},{31, 4},{30, 4},{29,

4},{28, 4},{27, 4},{We},{So},{Ea},{27, 5},{27, 6},{27, 7},
{So},{Ea},{No},{Ea},{27, 8},{27, 9},{27, 10},{27, 11},
{27, 12},{27, 13},{So},{26, 13},{25, 13},{24, 13},{23, 13},
{We},{So},{Ea},{So},{22, 13},{21, 13},{20, 13},{19, 13},
{18, 13},{We},{So},{Ea},{So},{17, 13},{We},{So},{Ea},
{So},{16, 13},{15, 13},{14, 13},{13, 13},{12, 13},{11, 13},
{10, 13},{9, 13},{We},{So},{Ea},{So},{8, 13},{We},{8,

12},{8, 11},{8, 10},{8, 9},{8, 8},{No},{We},{So},{We},

{8, 7},{No},{We},{So},{We},{8, 6},{8, 5},{8, 4},{No},
{We},{So},{We},{8, 3},{No},{We},{So},{We},{8, 2},
{No},{We},{So},{7, 2},{6, 2},{5, 2},{4, 2},{We},{So},
{Ea},{So},{3, 2},{We},{So},{Ea},{So},{2, 2},{We},{So},
{Ea},{2, 3},{2, 4},{2, 5},{2, 6},{So},{Ea},{No},{Ea},{2, 7},
{So},{Ea},{No},{Ea},{2, 8},{So},{Ea},{No},{3, 8},{4, 8},
{Ea},{No},{We},{No},{5, 8},{Ea},{5, 9},{5, 10},{5, 11},

{5, 12},{5, 13},{5, 14},{5, 15},{So},{Ea},{No},{Ea},{5, 16},

{So},{Ea},{No},{Ea},{5, 17},{So},{Ea},{No},{6, 17},

{7, 17},{8, 17},{Ea},{No},{We},{No},{9, 17},{Ea},{No},

{We},{No},{10, 17},{11, 17},{12, 17},{13, 17},{14, 17},
{Ea},{No},{We},{No},{15, 17},{Ea},{No},{We},{No},
{16, 17},{Ea},{No},{We},{No},{17, 17},{Ea},{17, 18},
{17, 19},{17, 20},{So},{Ea},{No},{Ea},{17, 21},{So},{Ea},
{No},{18, 21},{19, 21},{Ea},{No},{We},{No},{20, 21},
{Ea},{No},{We},{No},{21, 21},{22, 21},{23, 21},{24, 21},
{25, 21},{Ea},{No},{We},{No},{26, 21},{Ea},{No},
{We},{No},{27, 21},{Ea},{27, 22},{27, 23},{27, 24},{So},
{Ea},{No},{Ea},{27, 25},{So},{Ea},{No},{28, 25},{29,

25},{Ea},{No},{We},{No},{30, 25},{Ea},{30, 26},{30, 27},
{30, 28},{So},{Ea},{No},{Ea},{30, 29},{So},{Ea},{No},
{Ea},{30, 30},{So},{29, 30},{28, 30},{27, 30},{26, 30},
{We},{So},{Ea},{So},{25, 30},{We},{So},{Ea},{So},{24,

30},{23, 30},{We},{So},{Ea},{So},{22, 30},{We},{So},
{Ea},{So},{21, 30},{20, 30},{We},{So},{Ea},{So},{19,

30},{We},{So},{Ea},{So},{18, 30},{We},{18, 29},{18, 28},
{18, 27},{No},{We},{So},{We},{18, 26},{No},{We},
{So},{We},{18, 25},{No},{We},{So},{We},{18, 24},
{No},{We},{So},{17, 24},{16, 24},{We},{So},{Ea},{So},
{15, 24},{We},{So},{Ea},{So},{14, 24},{We},{So},{Ea},
{14, 25},{14, 26},{So},{Ea},{No},{Ea},{14, 27},{So},
{Ea},{No},{Ea},{14, 28},{So},{13, 28},{12, 28},{11, 28},
{We},{So},{Ea},{So},{10, 28},{We},{10, 27},{10, 26},
{10, 25},{No},{We},{So},{We},{10, 24},{No},{We},
{So},{9, 24},{8, 24}}. (10)

Modelling and Simulation in Engineering 11

5 10 15 20 25 30 35

Cost function value

0

5

10

15

20

25

N
u

m
be

r
of

si
m

u
la

ti
on

s

Figure 11: Histogram of SA algorithm: the number of cases in
specific intervals of cost function values.

X X X X
X
X
X
X
X X X X X X X X X X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
XXXXXXXXXXXX

X
X
X
X
X
X X X X X X X

X
X
X X X X X X X X X X

X
X
X
X
X
X
X
X
X
X
X
X X X X X

X
X
X
X
X
X
X
X
X
X XX X X

X
X
X X X X X X

X
X
X
X
X
X
X
X
X
X
X
XXXXXXX

X
X
X
X X XX X

X

X
XXXXX

X

X

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 12: Santa Fe Trail overcome by ant found by DE.

6. Conclusions

This contribution deals with an alternative algorithm for
symbolic regression. This study shows that this algorithm is
suitable not only for mathematical regression but also for
setting of optimal trajectory for artificial ant which can be
replaced by robots in real world, in industry.

In comparison with standard GP, it can be stated on the
basic aforementioned results that AP can solve this kind of
problems in shorter times as cost function evaluations are
counted.

The aim of this study was not to show that AP is better
or worse than GP (or GE when compared), but that AP is
also a powerful tool for symbolic regression with support of
different evolutionary algorithms.

The main object of this paper was to show that symbolic
regression done by AP is able to solve also cases where
linguistic terms as, for example, commands for movement
of artificial ant or robots in real world are. Here, simulations

for 3 algorithms: SOMA, DE, and SA were carried out. As
the figures showed, SOMA and DE were more successful
in positive results than SA was. This proved that a good
performance of AP depends on a choice of suitable robust
and powerful evolutionary algorithms.

During simulations carried in this problem following
results were reached:

(I) 50 simulations for each algorithm means 150 in total
for all 3 algorithms.

(II) Positive results:

(i) 49 from 50 simulations for SOMA,

(ii) 49 from 50 for DE,

(iii) and 14 from 50 for SA,

which accomplished the required tasks thus analytic
programming is able to solve such kind of problems
in symbolic regression. This result also says that
the basic version of simulated annealing used here
is not so powerful tool as other two evolutionary
algorithms are. It is supposed that the cost function
is very complicated with quite a lot of local optima
and, therefore, the simulated annealing was not so
successful as SOMA or DE were.

(III) Solutions which fulfil conditions which were laid
down by Koza [1], concerned to the number of
steps, were found (2 by SOMA and 3 by DE). It
means 5 solutions were successful under the 400
steps. Moreover, 17 (SOMA) + 20 (DE) + 6 (SA), in
total 43 from 150 were successful under the 545 steps
which was introduced by Koza [1, 22] as an optimal
one.

Future research is key activity in this field. The following
steps are to finished simulations with GA and other evolu-
tionary algorithms and to try some other class of problems to
show that analytic programming is powerful tool as genetic
programming or grammatical evolution are.

Acknowledgments

This work was supported by Grant no. MSM 7088352101
of the Ministry of Education of the Czech Republic and by
grants of the Grant Agency of the Czech Republic GACR
102/09/1680.

References

[1] J. R. Koza, Genetic Programming, MIT Press, Cambridge, Mass,
USA, 1998.

[2] J. R. Koza, F. H. Bennet, D. Andre, and M. Keane, Genetic
Programming III: Darwinian Invention and Problem Solving,
Morgan Kaufmann, San Francisco, Calif, USA, 1999.

[3] http://www.genetic-programming.org.
[4] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary

Automatic Programming in an Arbitrary Language, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2003.

12 Modelling and Simulation in Engineering

[5] J. O’Sullivan and C. Ryan, “An investigation into the use
of different search strategies with grammatical evolution,”
in Proceedings of the 5th European Conference on Genetic
Programming (EuroGP ’02), pp. 268–277, Springer, Kinsale,
Ireland, April 2002.

[6] http://www.grammatical-evolution.org.

[7] I. Zelinka, “Analytic programming by means of SOMA
algorithm,” in Proceedings of the 8th International Conference
on Soft Computing (Mendel ’02), pp. 93–101, Brno, Czech
Republic, June 2002.

[8] I. Zelinka and Z. Oplatkova, “Analytic programming—
comparative study,” in Proceedings of the 2nd Interna-
tional Conference on Computational Intelligence, Robotics, and
Autonomous Systems (CIRAS ’03), Singapore, December 2003.

[9] I. Zelinka, Z. Oplatkova, and L. Nolle, “Boolean symme-
try function synthesis by means of arbitrary evolutionary
algorithms-comparative study,” International Journal of Simu-
lation Systems, Science and Technology, vol. 6, no. 9, pp. 44–56,
2005.

[10] L. Davis, Handbook of Genetic Algorithms, International
Thomson Computer Press, Boston, Mass, USA, 1996.

[11] M. O’Neill and A. Brabazon, “Grammatical differential evolu-
tion,” in Proceedings of the International Conference on Artificial
Intelligence (ICAI ’06), pp. 231–236, CSEA Press, Las Vegas,
Nev, USA, June 2006.

[12] M. O’Neill, F. Leahy, and A. Brabazon, “Grammatical swarm:
a variable-length particle swarm algorithm,” in Swarm Intelli-
gent Systems, pp. 59–74, Springer, New York, NY, USA, 2006.

[13] C. G. Johnson, “Artificial immune system programming for
symbolic regression,” in Proceedings of the 6th European
Conference on Genetic Programming (EuroGP ’03), C. Ryan, T.
Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, Eds., vol.
2610 of Lecture Notes in Computer Science, pp. 345–353, Essex,
UK, April 2003.

[14] R. Salustowicz and J. Schmidhuber, “Probabilistic incremental
program evolution,” Evolutionary Computation, vol. 5, no. 2,
pp. 123–141, 1997.

[15] I. Zelinka, “SOMA-self organizing migrating algorithm,” in
New Optimization Techniques in Engineering, B. V. Babu and
G. Onwubolu, Eds., Springer, New York, NY, USA, 2004.

[16] J. Lampinen and I. Zelinka, “Mechanical engineering design
optimization by differential evolution,” in New Ideas in
Optimization, vol. 1, pp. 127–146, McGraw-Hill, Boston,
Mass, USA, 1999.

[17] I. Zelinka, P. Varacha, and Z. Oplatkova, “Evolutionary
synthesis of neural network,” in Proceedings of the 12th
International Conference on Softcomputing (Mendel ’06), pp.
25–31, Brno, Czech Republic, May-June 2006.

[18] Z. Oplatková, “Optimal trajectory of robots using symbolic
regression,” in Proceedings of the 56th International Astronau-
tical Congress, Fukuoka, Japan, October 2005, paper no. IAC-
05-C1.4.07.

[19] V. a kol. Mařı́k, Artificial Intelligence IV, Academia, Prague,
Czech Republic, 2004.

[20] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evo-
lution: A Practical Approach to Global Optimization, Natural
Computing Series, Springer, New York, NY, USA, 1st edition,
2005.

[21] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimiza-
tion by simulated annealing,” Science, vol. 220, no. 4598, pp.
671–680, 1983.

[22] Z. Oplatková and I. Zelinka, “Investigation on artificial
ant using analytic programming,” in Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation
(GECCO ’06), pp. 949–950, Seattle, Wash, USA, July 2006.

