Publikace UTB
Repozitář publikační činnosti UTB

Cellulose-based air-cathode loaded by in-situ hydrothermally synthesized NiFe2O4 for Al-air battery: Influence of surface chemistry on the electrochemical performance

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Cellulose-based air-cathode loaded by in-situ hydrothermally synthesized NiFe2O4 for Al-air battery: Influence of surface chemistry on the electrochemical performance en
dc.contributor.author Shebl, Ahmed
dc.contributor.author Nada, Ahmed Ali
dc.contributor.author Opálek, Andrej
dc.contributor.author Kleinová, Angela
dc.contributor.author Eckstein-Andicsová, Anita
dc.contributor.author Taveri, Gianmarco
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Osička, Josef
dc.contributor.author Kaňková, Hana
dc.contributor.author Nagy, Štefan
dc.contributor.author Mičušík, Matej
dc.contributor.author Mosnáček, Jaroslav
dc.relation.ispartof International Journal of Biological Macromolecules
dc.identifier.issn 0141-8130 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1879-0003 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2025
utb.relation.volume 320
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.ijbiomac.2025.145970
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0141813025065274
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S0141813025065274/pdfft?md5=6ccb068983c933a02e0772860d7295ac&pid=1-s2.0-S0141813025065274-main.pdf
dc.subject Anionic-charge en
dc.subject Cationic-charge en
dc.subject Cellulosic Fabric en
dc.subject Metal-air Batteries en
dc.subject Nickel Ferrite en
dc.subject Oxygen Reduction Reaction en
dc.subject Polyaniline en
dc.subject Aluminum en
dc.subject Cellulose en
dc.subject Copper en
dc.subject Iron en
dc.subject Nickel en
dc.subject Oxygen en
dc.subject Polyaniline en
dc.subject Silver en
dc.subject Ferric Ion en
dc.subject Aluminum en
dc.subject Aniline Compounds en
dc.subject Cellulose en
dc.subject Ferric Compounds en
dc.subject Nickel en
dc.subject Nickel Ferrite en
dc.subject Polyaniline en
dc.subject Aluminum Compounds en
dc.subject Cellulosic Resins en
dc.subject Electric Discharges en
dc.subject Electrolytic Reduction en
dc.subject Electron Transport Properties en
dc.subject Ferrite en
dc.subject Functional Groups en
dc.subject Grafting (chemical) en
dc.subject Iron Compounds en
dc.subject Metal-air Batteries en
dc.subject Nickel en
dc.subject Nickel Compounds en
dc.subject Oxygen Reduction Reaction en
dc.subject Surface Chemistry en
dc.subject Air Cathode en
dc.subject Anionic Charge en
dc.subject Cationic Charges en
dc.subject Cellulosic Fabric en
dc.subject Electrochemical Performance en
dc.subject Fabric Surfaces en
dc.subject Hydrothermally Synthesized en
dc.subject Metal-air Battery en
dc.subject Nickel Ferrite en
dc.subject Cyclic Voltammetry en
dc.subject Polyaniline en
dc.subject Acrylic Acid Derivative en
dc.subject Aluminum en
dc.subject Cellulose en
dc.subject Chemicals And Drugs en
dc.subject Copper en
dc.subject Electrolyte en
dc.subject Functional Group en
dc.subject Iron en
dc.subject Monomer en
dc.subject Nanomaterial en
dc.subject Nanoparticle en
dc.subject Nickel en
dc.subject Nickel Ferrite en
dc.subject Oxygen en
dc.subject Polyaniline en
dc.subject Silver en
dc.subject Trevorite en
dc.subject Unclassified Drug en
dc.subject Air en
dc.subject Aniline Derivative en
dc.subject Ferric Ion en
dc.subject Article en
dc.subject Crystal Structure en
dc.subject Current Density en
dc.subject Cyclic Voltammetry en
dc.subject Electric Conductivity en
dc.subject Electrochemical Analysis en
dc.subject Electron Transport en
dc.subject Elemental Analysis en
dc.subject Energy Dispersive X Ray Spectroscopy en
dc.subject Fourier Transform Infrared Spectroscopy en
dc.subject Impedance Spectroscopy en
dc.subject In-situ Hydrothermally Synthesis en
dc.subject Inductively Coupled Plasma Atomic Emission Spectrometry en
dc.subject Linear Sweep Voltammetry en
dc.subject Morphology en
dc.subject Physical Chemistry en
dc.subject Polymerization en
dc.subject Scanning Electron Microscopy en
dc.subject Synthesis en
dc.subject Transmission Electron Microscopy en
dc.subject X Ray Diffraction en
dc.subject X Ray Photoemission Spectroscopy en
dc.subject Chemistry en
dc.subject Electrode en
dc.subject Power Supply en
dc.subject Surface Property en
dc.subject Aluminum Compounds en
dc.subject Cellulose Plastics en
dc.subject Copolymerization en
dc.subject Functional Groups en
dc.subject Iron Compounds en
dc.subject Air en
dc.subject Aluminum en
dc.subject Aniline Compounds en
dc.subject Cellulose en
dc.subject Electric Conductivity en
dc.subject Electric Power Supplies en
dc.subject Electrochemical Techniques en
dc.subject Electrodes en
dc.subject Ferric Compounds en
dc.subject Surface Properties en
dc.description.abstract The influence of the cellulosic fabrics (CF) surface chemistry on hosting nickel ferrite (NF) and its application in Al-air battery was studied. CFs were modified with acrylate monomer bearing positively (COOCH<inf>2</inf>CH<inf>2</inf>N+(CH<inf>3</inf>)<inf>3</inf>Cl−) or negatively (-COO(CH<inf>2</inf>)<inf>3</inf>SO<inf>3</inf>K) charged functional groups at different degrees of graft-polymerization. NF was in-situ hydrothermally synthesized into the un/grafted-CF followed by in-situ polymerization of polyaniline (PANi) to enhance the electric conductivity nine orders of magnitude. This via altering the electron transport mechanism from the tunnelling to the variable-range hopping mechanism for CF-NF and PANied-CF-NF, respectively. XRD confirmed a single phase of Trevorite (NiFe<inf>2</inf>O<inf>4</inf>). SEM images showed a dense deposition of NF on the anionic fabrics and TEM images demonstrated the change of NF shape (nanorice – nanoctahedrons) and size (9–75 nm) as a function of the surface chemistry. Anionic ACs showed higher Ni+2 and Fe+3 uptake compared to the cationic ones as confirmed by ICP-OES and XPS. Cyclic voltammetry showed that NF reduced oxygen to water through 2 × 2 electron pathway. Electrochemical performance of ACs showed a good correlation with the NF content to an extent. Highest current density (4 mA/cm2) and discharge time (13.8 h) were obtained from anionic AC compared to 1.7–2.5 h for blank and cationized ACs, respectively. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1012543
utb.identifier.scopus 2-s2.0-105010843572
utb.identifier.pubmed 40659271
utb.identifier.coden IJBMD
utb.source j-scopus
dc.date.accessioned 2025-11-27T12:48:50Z
dc.date.available 2025-11-27T12:48:50Z
dc.description.sponsorship The authors thank SRDA grant agency for support through project APVV-23-0534 and APVV-22-0062 . Grant Agency VEGA through project VEGA 2/0137/23 and VEGA 2/0038/22 . This work was performed during the implementation of the project Building-up Centre for advanced materials application of the Slovak Academy of Sciences, ITMS project code 313021T081 supported by the Integrated Infrastructure Operational Program funded by the ERDF . The authors M.M and J.O. gratefully acknowledge the Ministry of Education, Youth and Sports of the Czech Republic - DKRVO ( RP/CPS/2024-28/003 ). Also, acknowledge Czech Science Foundation project no. 23-07244S for financial support. This study was carried out in the framework of the project FunGlass that has received funding from the European Union 's 2020 research and innovation program under grant agreement No. 739566 . Author \u0160.N. would like to acknowledge the Recovery and Resilience Plan for Slovakia under project No. 09I03-03-V04-00715.
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Osička, Josef
utb.fulltext.sponsorship The authors thank SRDA grant agency for support through project APVV-23-0534 and APVV-22-0062. Grant Agency VEGA through project VEGA 2/0137/23 and VEGA 2/0038/22. This work was performed during the implementation of the project Building-up Centre for advanced materials application of the Slovak Academy of Sciences, ITMS project code 313021T081 supported by the Integrated Infrastructure Operational Program funded by the ERDF. The authors M.M and J.O. gratefully acknowledge the Ministry of Education, Youth and Sports of the Czech Republic - DKRVO (RP/CPS/2024-28/003). Also, acknowledge Czech Science Foundation project no. 23-07244S for financial support. This study was carried out in the framework of the project FunGlass that has received funding from the European Union's 2020 research and innovation program under grant agreement No.739566. Author Š.N. would like to acknowledge the Recovery and Resilience Plan for Slovakia under project No. 09I03-03-V04-00715.
utb.scopus.affiliation Slovak Academy of Sciences, Bratislava, Slovakia; College of Science, Cairo, Egypt; National Research Centre, Giza, Egypt; Polymer Institute of Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Materials and Machine Mechanics Slovak Academy of Sciences, Bratislava, Slovakia; Tomas Bata University in Zlin, Zlin, Czech Republic; Alexander Dubcek University of Trencin, Trencin, Slovakia
utb.fulltext.projects APVV-23-0534
utb.fulltext.projects APVV-22-0062
utb.fulltext.projects VEGA 2/0137/23
utb.fulltext.projects VEGA 2/0038/22
utb.fulltext.projects ITMS 313021T081
utb.fulltext.projects DKRVO (RP/CPS/2024-28/003)
utb.fulltext.projects 23-07244S
utb.fulltext.projects 739566
utb.fulltext.projects 09I03-03-V04-00715
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam