Publikace UTB
Repozitář publikační činnosti UTB

A novel alternative to free oil remediation and recovery: Foamy absorbents designed from low molecular paraffinic waste

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title A novel alternative to free oil remediation and recovery: Foamy absorbents designed from low molecular paraffinic waste en
dc.contributor.author Krupa, Igor
dc.contributor.author Mahmoud, Abdelrahman
dc.contributor.author Sobolčiak, Patrik
dc.contributor.author Popelka, Anton
dc.contributor.author Mrlík, Miroslav
dc.contributor.author Minařík, Antonín
dc.contributor.author Gasmi, Soumia
dc.contributor.author Ouederni, Mabrouk
dc.contributor.author Adham, Samer
dc.relation.ispartof Separation and Purification Technology
dc.identifier.issn 1383-5866 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1873-3794 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 302
dc.type article
dc.language.iso en
dc.publisher Elsevier B.V.
dc.identifier.doi 10.1016/j.seppur.2022.122118
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1383586622016732
dc.relation.uri https://www.sciencedirect.com/science/article/pii/S1383586622016732/pdfft
dc.subject oil removal en
dc.subject foams en
dc.subject absorption capacity en
dc.subject porosity en
dc.description.abstract This study focuses on preparing porous, hydrophobic, and oleophilic hydrocarbon-based foams applicable for removing free oils from water surfaces. Paraffinic waste material generated during industrial production of lowdensity polyethylene (Qatar Petrochemical Company) was used for the preparation of foamy, elastic structures through crosslinking of short aliphatic chains by dicumyl peroxide and foaming by 1,1 '-azobiscarbamide. The porosity of the foam determined by computer microtomography was 58.9%, and the bulk density was 0.42 g. cm-3. The sorption ability of the foam was tested using diesel oil, motor oil, and heavy crude oil. The absorption capacity of foam was characterized as the ratio between the mass of oil absorbed by the foam and the mass of a neat foam (Sw) and as the ratio between the volume of oil absorbed by the foam and the volume of a neat foam (Sv). The absorption capacities of the new foam reported in this study (referred to here as Qwax foam) are 6.6 +/- 0.3 g/g, or 3.3 +/- 0.2 cm3/cm3 for diesel oil, 3.9 +/- 0.4 g/g or 1.9 +/- 0.3 cm3/cm3 for motor oil, and 3.4 +/- 0.2 g/g or 1.4 +/- 0.4 cm3/cm3 for crude oil. To compare the sorption ability of Qwax foam with some standard foams, the absorption capacities of highly porous commercial polyurethane (PU) and melamine (MA) foams were investigated under the same conditions. These foams showed much higher sorption capacity considering the Sw parameter as a reference; however, there was a lower sorption capacity compared to parameter Sv. In the last paragraph, the suitability and the relevancy of parameters Sw and Sv for a comparison of the absorption capacity of foams were theoretically analyzed. en
utb.faculty University Institute
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1011143
utb.identifier.obdid 43884122
utb.identifier.scopus 2-s2.0-85138145977
utb.identifier.wok 000875946400005
utb.identifier.coden SPUTF
utb.source j-scopus
dc.date.accessioned 2022-10-05T13:13:10Z
dc.date.available 2022-10-05T13:13:10Z
dc.description.sponsorship RP/CPS/2020/003; Qatar National Research Fund, QNRF: NPRP12S-0311-190299; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT
dc.description.sponsorship Qatar National Research Fund under its National Priorities Research Program [NPRP12S-0311-190299]; ConocoPhillips Global Water Sustainability Center (GWSC); Qatar Petrochemical Company (QAPCO); Ministry of Education, Youth, and Sports of the Czech Republic-DKRVO [RP/CPS/2020/003]
utb.ou Centre of Polymer Systems
utb.ou Department of Physics and Materials Engineering
utb.contributor.internalauthor Mrlík, Miroslav
utb.contributor.internalauthor Minařík, Antonín
utb.fulltext.affiliation Igor Krupa a,*, Abdelrahman Mahmoud a, Patrik Sobolciak a, Anton Popelka a, Miroslav Mrlik b, Antonin Minarik b,c, Soumia Gasmi a, Mabrouk Ouederni d, Samer Adham e a Center for Advanced Materials, Qatar University, P. O. Box 2713, Doha, Qatar b Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic c Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, 70 01 Zlin, Czech Republic d Qatar Petrochemical Company (QAPCO), Doha 756, Qatar e ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park, P. O. Box 24750, Doha, Qatar * Corresponding author. E-mail address: igor.krupa@qu.edu.qa (I. Krupa).
utb.fulltext.dates Received 27 June 2022 Received in revised form 4 September 2022 Accepted 11 September 2022 Available online 16 September 2022
utb.fulltext.references [1] A.M.A. Pintor, V.J.P. Vilar, C.M.S. Botelho, R.A.R. Boaventura, Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies. A critical review, Chem. Eng. J. 297 (2016) 229–255, https://doi.org/10.1016/j.cej.2016.03.121. [2] J. Kamp, J. Villwock, M. Kraume, Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches, Rev. Chem. Eng. 33 (2017) 1–47, https://doi.org/10.1515/revce-2015-0071. [3] J. Ge, H.Y. Zhao, H.W. Zhu, J. Huang, L.A. Shi, S.H. Yu, Advanced sorbents for oilspill cleanup: recent advances and future perspectives, Adv. Mater. 28 (2016) 10459–10490, https://doi.org/10.1002/adma.201601812. [4] M.A. Hubbe, O.J. Rojas, M. Fingas, B.S. Gupta, Cellulosic substrates for removal of pollutants from aqueous systems: a review. 3. Spilled oil and emulsified organic liquids, BioResources 8 (2013) 3038. [5] T. Arbatan, X. Fang, W. Shen, Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups, Chem. Eng. J. 166 (2011) 787–791, https://doi.org/10.1016/J.CEJ.2010.11.015. [6] O.K. Karakasi, A. Moutsatsou, Surface modification of high calcium fly ash for its application in oil spill clean up, Fuel 89 (2010) 3966–3970, https://doi.org/10.1016/J.FUEL.2010.06.029. [7] R.K. Ramakrishnan, V.V.T. Padil, M. Škodová, S. Wacławek, M. Černík, S. Agarwal, Hierarchically porous bio-based sustainable conjugate sponge for highly selective oil/organic solvent absorption, Adv. Funct. Mater. 31 (2021) 2100640, https://doi.org/10.1002/ADFM.202100640. [8] J.P. Chaudhary, N. Vadodariya, S.K. Nataraj, R. Meena, Chitosan-based aerogel membrane for robust oil-in-water emulsion separation, ACS Appl. Mater. Interfaces. 7 (2015) 24957–24962, https://doi.org/10.1021/ACSAMI.5B08705. [9] H. Kim, G. Zhang, T.C.M. Chung, C. Nam, A role for newly developed sorbents in remediating large-scale oil spills: reviewing recent advances and beyond, Adv. Sustain. Syst. 6 (2022) 2100211, https://doi.org/10.1002/ADSU.202100211. [10] N.Y. Abu-Thabit, O.J. Uwaezuoke, M.H. Abu Elella, Superhydrophobic nanohybrid sponges for separation of oil/ water mixtures, Chemosphere 294 (2022) 133644. [11] J. Pinto, A. Athanassiou, D. Fragouli, Surface modification of polymeric foams for oil spills remediation, J. Environ. Manage. 206 (2018) 872–889, https://doi.org/10.1016/j.jenvman.2017.11.060. [12] L. Vásquez, L. Campagnolo, A. Athanassiou, D. Fragouli, Expanded graphitepolyurethane foams for water-oil filtration, ACS Appl. Mater. Interfaces. 11 (2019) 30207–30217, https://doi.org/10.1021/ACSAMI.9B07907/SUPPL_FILE/AM9B07907_SI_006.AVI. [13] S.M. Hailan, D. Ponnamma, I. Krupa, The separation of oil/water mixtures by modified melamine and polyurethane foams: a review, Polym. 13 (2021) 4142. 13 (2021) 4142, doi: 10.3390/POLYM13234142. [14] J. Pinto, A. Athanassiou, D. Fragouli, Effect of the porous structure of polymer foams on the remediation of oil spills, J. Phys. D. Appl. Phys. 49 (14) (2016) 145601. [15] R.S. Rengasamy, D. Das, C. Praba Karan, Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers, J. Hazard. Mater. 186 (2011) 526–532, https://doi.org/10.1016/J.JHAZMAT.2010.11.031. [16] J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao, L. Jiang, Electrospun porous structure fibrous film with high oil adsorption capacity, ACS Appl. Mater. Interfaces. 4 (2012) 3207–3212, https://doi.org/10.1021/AM300544D. [17] S.J. Choi, T.H. Kwon, H. Im, D. Il Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y. K. Choi, A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water, ACS Appl. Mater. Interfaces 3 (2011) 4552–4556, https://doi.org/10.1021/AM201352W. [18] C.F. Wang, S.J. Lin, Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water, ACS Appl. Mater. Interfaces 5 (2013) 8861–8864, https://doi.org/10.1021/AM403266V. [19] A. Bayat, S.F. Aghamiri, A. Moheb, G.R. Vakili-Nezhaad, Oil spill cleanup from sea water by sorbent materials, Chem. Eng. Technol. 28 (2005) 1525–1528, https://doi.org/10.1002/CEAT.200407083. [20] Q.F. Wei, R.R. Mather, A.F. Fotheringham, R.D. Yang, Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery, Mar. Pollut. Bull. 46 (2003) 780–783, https://doi.org/10.1016/S0025-326X(03)00042-0. [21] M.H. Zhou, W.J. Cho, Oil absorbents based on styrene–butadiene rubber, J. Appl. Polym. Sci. 89 (2003) 1818–1824, https://doi.org/10.1002/APP.12252. [22] D. Ceylan, S. Dogu, B. Karacik, S.D. Yakan, O.S. Okay, O. Okay, Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater, Environ. Sci. Technol. 43 (2009) 3846–3852, https://doi.org/10.1021/ES900166V/SUPPL_FILE/ES900166V_SI_001.PDF. [23] G. Wang, H. Uyama, Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water, Sci. Rep. 6 (1) (2016). [24] X. Yuan, T.C.M. Chung, Novel solution to oil spill recovery: Using thermodegradable polyolefin oil superabsorbent polymer (Oil-SAP), Energy Fuels 26 (2012) 4896–4902, https://doi.org/10.1021/EF300388H/SUPPL_FILE/EF300388H_SI_001.PDF. [25] C. Nam, H. Li, G. Zhang, T.C.M. Chung, Petrogel: new hydrocarbon (oil) absorbent based on polyolefin polymers, Macromolecules 49 (2016) 5427–5437, https://doi.org/10.1021/ACS.MACROMOL.6B01244/ASSET/IMAGES/LARGE/MA-2016-01244V_0008.JPEG. [26] C. Nam, G. Zhang, T.C.M. Chung, Polyolefin-based interpenetrating polymer network absorbent for crude oil entrapment and recovery in aqueous system, J. Hazard. Mater. 351 (2018) 285–292, https://doi.org/10.1016/J.JHAZMAT.2018.03.004. [27] C. Nam, H. Li, G. Zhang, L.R. Lutz, B. Nazari, R.H. Colby, T.C.M. Chung, Practical oil spill recovery by a combination of polyolefin absorbent and mechanical skimmer, ACS Sustain. Chem. Eng. 6 (2018) 12036–12045, https://doi.org/10.1021/ACSSUSCHEMENG.8B02322/ASSET/IMAGES/LARGE/SC-2018-02322U_0011.JPEG. [28] I. Chodák, High modulus polyethylene fibres: preparation, properties and modification by crosslinking, Prog. Polym. Sci. 23 (1998) 1409–1442, https://doi.org/10.1016/S0079-6700(98)00006-9. [29] U.W. Gedde, Molecular structure of crosslinked polyethylene as revealed by 13C nuclear magnetic resonance and infra-red spectroscopy and gel permeation chromatography, Polymer (Guildf) 27 (1986) 269–274, https://doi.org/10.1016/0032-3861(86)90339-3. [30] E. Borsig, A. Fiedlerová, M. Lazár, Efficiency of chemical cross-linking of polypropylene, J. Macromol. Sci.: Part A – Chem. 16 (2) (1981) 513–528. [31] E.M. Kampouris, A.G. Andreopoulos, Benzoyl peroxide as a crosslinking agent for polyethylene, J. Appl. Polym. Sci. 34 (1987) 1209–1216, https://doi.org/10.1002/APP.1987.070340328. [32] M. Lazár, R. Rado, J. Rychlý, Crosslinking of polyolefins, Adv. Polym. Sci. 95 (1990) 149–197, https://doi.org/10.1007/3-540-52159-3_8. [33] A.S. Luyt, K. Ishripersadh, Comparative thermoanalytical investigation of the crosslinking behaviour of three different paraffin waxes in the presence of dicumyl peroxide, Thermochim. Acta. 333 (1999) 155–167, https://doi.org/10.1016/S0040-6031(99)00137-9. [34] N.S. Nhlapo, A.S. Luyt, H.C.M. Vosloo, Comparison of two curing agents in thermal crosslinking. I. Hard paraffin wax, J. Appl. Polym. Sci. 70 (1998) 1551–1559, https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8. [35] M. Narkis, I. Raiter, S. Shkolnik, A. Siegmannz, P. Eyerer, Structure and tensile behavior of irradiation-and peroxide-crosslinked polyethylenes, J. Macromol. Sci., Part B 26 (1) (1987) 37–58. [36] I. Krupa, A.S. Luyt, Thermal properties of uncross-linked and cross-linked LLDPE/wax blends, Polym. Degrad. Stab. 70 (2000) 111–117, https://doi.org/10.1016/S0141-3910(00)00097-5. [37] B. Su, Y. Tian, L. Jiang, Bioinspired interfaces with superwettability: from materials to chemistry, J. Am. Chem. Soc. 138 (2016) 1727–1748, https://doi.org/10.1021/JACS.5B12728/ASSET/IMAGES/LARGE/JA-2015-12728R_0025.JPEG. [38] J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Superoleophobic surfaces, Chem. Soc. Rev. 46 (2017) 4168–4217, https://doi.org/10.1039/C6CS00751A. [39] U. Baig, M. Faizan, A. Waheed, A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation, Adv. Colloid Interface Sci. 303 (2022), 102635, https://doi.org/10.1016/J.CIS.2022.102635. [40] P. Sobolčiak, M. Mrlik, A. Popelka, A. Minařík, M. Ilcikova, P. Srnec, Z. Nogellova, M. Ouederni, I. Krupa, Foamed phase change materials based on recycled polyethylene/paraffin wax blends, Polymers (Basel) 13 (2021) 1987, https://doi.org/10.3390/POLYM13121987. [41] Y. Nishi, N. Iwashita, Y. Sawada, M. Inagaki, Sorption kinetics of heavy oil into porous carbons, Water Res. 36 (2002) 5029–5036, https://doi.org/10.1016/S0043-1354(02)00225-7. [42] J. Feng, S.T. Nguyen, Z. Fan, H.M. Duong, Advanced fabrication and oil absorption properties of super-hydrophobic recycled cellulose aerogels, Chem. Eng. J. Complete (2015) 168–175, https://doi.org/10.1016/J.CEJ.2015.02.034. [43] M. Khosravi, S. Azizian, Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup, ACS Appl. Mater. Interfaces. 7 (2015) 25326–25333, https://doi.org/10.1021/ACSAMI.5B07504/ASSET/IMAGES/LARGE/AM-2015-07504E_0003.JPEG. [44] Z. Wang, J.P. Barford, C.W. Hui, G. McKay, Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents, Chem. Eng. J. 281 (2015) 961–969, https://doi.org/10.1016/J.CEJ.2015.07.002. [45] S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1–39. - References - Scientific Research Publishing, (n.d.). Available from: <https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1530542> (accessed June 5, 2022). [46] Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng. 76 (1998) 822–827, https://doi.org/10.1002/CJCE.5450760419. [47] M. Tanzifi, M.T. Yaraki, A.D. Kiadehi, S.H. Hosseini, M. Olazar, A.K. Bhati, S. Agarwal, V.K. Gupta, A. Kazemi, Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO 2 nanocomposite: experimental investigation and artificial neural network modeling, J. Colloid Interface Sci. 510 (2018) 246–261, https://doi.org/10.1016/J.JCIS.2017.09.055. [48] S. Songsaeng, P. Thamyongkit, S. Poompradub, Natural rubber/reduced-graphene oxide composite materials: morphological and oil adsorption properties for treatment of oil spills, J. Adv. Res. 20 (2019) 79–89, https://doi.org/10.1016/J.JARE.2019.05.007. [49] M.A. Hubbe, S. Azizian, S. Douven, Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: a review, BioResources 14 (2019) 7582–7626, https://doi.org/10.15376/BIORES.14.3.HUBBE. [50] M. Khosravi, S. Azizian, A new kinetic model for absorption of oil spill by porous materials, Microporous Mesoporous Mater. 230 (2016) 25–29, https://doi.org/10.1016/J.MICROMESO.2016.04.039. [51] P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release 5 (1987) 23–36, https://doi.org/10.1016/0168-3659(87)90034-4. [52] P.L. Ritger, N.A. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 5 (1987) 37–42, https://doi.org/10.1016/0168-3659(87)90035-6. [53] S.-K. Lin, Handbook of Polymers. By George Wypych, ChemTec Publishing, 2012; 680 Pages. Price $395.00, ISBN 978-1-895198-47-8, Polymers (Basel) 5 (2013) 225–233, doi: 10.3390/POLYM5010225.
utb.fulltext.sponsorship This research was made possible by a grant from the Qatar National Research Fund under its National Priorities Research Program (award number NPRP12S-0311-190299) and by financial support from the ConocoPhillips Global Water Sustainability Center (GWSC) and Qatar Petrochemical Company (QAPCO). The paper’s content is solely the responsibility of the authors and does not necessarily represent the official views of the Qatar National Research Fund or ConocoPhillips, and QAPCO. The authors (M.M., and A.M.) gratefully acknowledge the Ministry of Education, Youth, and Sports of the Czech Republic - DKRVO (RP/CPS/2020/003).
utb.wos.affiliation [Krupa, Igor; Mahmoud, Abdelrahman; Sobolciak, Patrik; Popelka, Anton; Gasmi, Soumia] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar; [Mrlik, Miroslav; Minarik, Antonin] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida T Bati 5678, Zlin 76001, Czech Republic; [Minarik, Antonin] Tomas Bata Univ Zlin, Fac Technol, Dept Phys & Mat Engn, Vavreckova 275, Zlin 7001, Czech Republic; [Ouederni, Mabrouk] Qatar Petrochem Co QAPCO, Doha, Qatar; [Adham, Samer] ConocoPhillips Global Water Sustainabil Ctr, POB 24750,Qatar Sci & Technol Pk, Doha, Qatar
utb.scopus.affiliation Center for Advanced Materials, Qatar University, P. O. Box 2713, Doha, Qatar; Centre of Polymer Systems, Tomas Bata University in Zlin, Trida T. Bati 5678, Zlin, 760 01, Czech Republic; Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavřečkova 275, Zlin, 70 01, Czech Republic; Qatar Petrochemical Company (QAPCO), Doha, 756, Qatar; ConocoPhillips Global Water Sustainability Center, Qatar Science and Technology Park, P. O. Box 24750, Doha, Qatar
utb.fulltext.projects NPRP12S-0311-190299
utb.fulltext.projects RP/CPS/2020/003
utb.fulltext.faculty University Institute
utb.fulltext.faculty Faculty of Technology
utb.fulltext.ou Centre of Polymer Systems
utb.fulltext.ou Department of Physics and Materials Engineering
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam