Publikace UTB
Repozitář publikační činnosti UTB

Innovative investigation of zinc oxide nanoparticles used in dentistry

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Innovative investigation of zinc oxide nanoparticles used in dentistry en
dc.contributor.author Tiwari, Ajay Kumar
dc.contributor.author Jha, Saket
dc.contributor.author Singh, Abhimanyu Kumar
dc.contributor.author Mishra, Sheo Kumar
dc.contributor.author Pathak, Ashok Kumar
dc.contributor.author Ojha, Rudra Prakash
dc.contributor.author Yadav, Raghvendra Singh
dc.contributor.author Dikshit, Anupam
dc.relation.ispartof Crystals
dc.identifier.issn 2073-4352 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 12
utb.relation.issue 8
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/cryst12081063
dc.relation.uri https://www.mdpi.com/2073-4352/12/8/1063
dc.relation.uri https://www.mdpi.com/2073-4352/12/8/1063/pdf?version=1659677854
dc.subject ZnO nanoparticles en
dc.subject dental caries en
dc.subject tooth decaying pathogens en
dc.subject antibacterial bioassay en
dc.subject broth microdilution en
dc.subject tooth filling agents en
dc.description.abstract Dental caries is a major lifestyle concern as dental components affect the face of an individual. The issue of tooth decay occurs in every age group throughout the globe. Researchers are probing incipient implements and techniques to develop filling agents for decayed teeth. Zinc oxide (ZnO) powder is utilized mostly as a filling agent. Nanotechnology enhanced the efficiency of compounds of metal oxides utilized for dental caries. The present study aims to investigate the properties of ZnO nanoparticles (NPs) synthesized chemically (using ZnCl2 and NaOH) as well as biologically (using aqueous leaf extract of Murraya paniculata). The XRD patterns confirm that ZnO NPs have a hexagonal crystalline structure with particle sizes of 47 nm and 55 nm for chemically and biologically synthesized NPs, respectively. The FE-SEM data confirm the nanorod and spherical/cubical shape morphologies for the chemically and biologically synthesized ZnO NPs, respectively. FTIR data show the peaks between 4000 and 450 cm(-1) of the functional groups of -OH, C-O, -C-H-, and Zn-O bonds. The UV-Vis absorption study indicates a peak around 370 nm and a hump around 360 nm corresponding to the chemically and biologically synthesized ZnO NPs, respectively. An antibacterial bioassay was performed and compared with commercially available ZnO bulk powder against tooth decaying pathogens, viz., Streptococcus mutans, Staphylococcus aureus, E. coli, and Lactobacillus fermentum, and found that both ZnO NPs had results closer to those of the standard drug (rifampicin). Thus, the synthesized ZnO NPs may be utilized as nano-drugs for the application of tooth decaying filling agents. Even biologically synthesized ZnO NPs may be considered more environmentally friendly and less toxic to human health concerns. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011125
utb.identifier.obdid 43884378
utb.identifier.scopus 2-s2.0-85137397194
utb.identifier.wok 000847144400001
utb.source J-wok
dc.date.accessioned 2022-09-12T10:36:23Z
dc.date.available 2022-09-12T10:36:23Z
dc.description.sponsorship UGC, New Delhi
dc.description.sponsorship University Grants Commission, UGC; University of Lucknow, LU
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yadav, Raghvendra Singh
utb.fulltext.affiliation Ajay Kumar Tiwari 1, Saket Jha 2 https://orcid.org/0000-0003-3255-0974 , Abhimanyu Kumar Singh 3,* https://orcid.org/0000-0003-2969-2357 , Sheo Kumar Mishra 4, Ashok Kumar Pathak 5, Rudra Prakash Ojha 6, Raghvendra Singh Yadav 7 https://orcid.org/0000-0003-1773-3596 and Anupam Dikshit 2 1 Department of Physics, Nehru Gram Bharati (Deemed to be University), Prayagraj 221505, India; ajayngbv@gmail.com 2 Biological Product Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India; jhasaket90@gmail.com (S.J.); anupambplau@gmail.com (A.D.) 3 Department of Physics, Shyama Prasad Mukherjee Government Degree College, University of Allahabad, Prayagraj 211013, India 4 Department of Physics, Indira Gandhi National Tribal University, Amarkantak 484886, India; sheokmishra@igntu.ac.in 5 Department of Physics, Ewing Christian College, University of Allahabad, Prayagraj 211003, India; akpathak75@gmail.com 6 Department of Zoology, Nehru Gram Bharati (Deemed to be University), Prayagraj 221505, India; drrudrapojha266@gmail.com 7 Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 76001 Zlin, Czech Republic; yadav@utb.cz * Correspondence: abhimanyu.kr.singh@gmail.com
utb.fulltext.dates Received: 1 July 2022 Revised: 25 July 2022 Accepted: 27 July 2022 Published: 29 July 2022
utb.fulltext.references 1. Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] 2. Aviv, M.; Berdicevsky, I.; Zilberman, M. Gentamicin-loaded bioresorbable films for prevention of bacterial infections associated with orthopedic implants. J. Biomed. Mater. Res. A 2007, 83, 10–19. [Google Scholar] [CrossRef] [PubMed] 3. Bonzonga, J.C.J.; Kopelevich, D.; Bitton, G. Assessment of the Environmental Impacts of Nanotechnology on Organisms and Ecosystem; Progress Report; United States Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar] 4. Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed][Green Version] 5. Cho, E.J.; Holback, H.; Liu, K.C.; Abouelmagd, S.A.; Park, J.; Yeo, Y. Nanoparticle characterization: State of the art, challenges, and emerging technologies. Mol. Pharm. 2013, 10, 2093–2110. [Google Scholar] [CrossRef][Green Version] 6. Ramos, A.P.; Cruz, M.A.E.; Tovani, C.B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophys. Rev. 2017, 9, 79–89. [Google Scholar] [CrossRef] 7. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef][Green Version] 8. Saafan, A.; Zaazou, M.H. Assessment of Photodynamic Therapy and Nanoparticles Effects on Caries Models. Maced. J. Med. Sci. 2018, 6, 1289–1295. [Google Scholar] [CrossRef][Green Version] 9. Cao, W.; Zhang, Y. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photo-curable core-shell AgBr/cationic polymer nanocomposites. J. Mater. Sci. Mater. Med. 2017, 28, 103. [Google Scholar] [CrossRef] 10. Magalhaes, A.P.; Moreira, F.C. Silver nanoparticles in resin luting cements: Antibacterial and Physiochemicalproperties. J. Clin. Exp. Dent. 2016, 8, 415–422. [Google Scholar] [CrossRef] 11. McNamara, K.; Tofail, S.A.M. Nanoparticles in biomedical applications. Adv. Phys. 2017, 2, 54–88. [Google Scholar] [CrossRef] 12. Madubuonu, N.; Aisida, S.O.; Ali, A.; Ahmad, I.; Zhao, T.K.; Botha, S.; Maaza, M.; Ezema, F.I. Biosynthesis of iron oxide nanoparticles via a composite of Psidiumguavaja-Moringaoleifera and their antibacterial and photocatalytic study. J. Photochem. Photobiol. B Biol. 2019, 119, 111601. [Google Scholar] [CrossRef] 13. Aisida, S.O.; Akpa, P.A.; Ahmad, I.; Zhao, T.-K.; Maaza, M.; Ezema, F.I. Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur. Polym. J. 2020, 122, 109371. [Google Scholar] [CrossRef] 14. Cao, W.; Zhang, Y. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J. Mater. Sci. Mater. Med. 2018, 29, 162. [Google Scholar] [CrossRef] 15. Kasraei, S.; Sami, L. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restore. Dent. Endod. 2014, 39, 109–114. [Google Scholar] [CrossRef][Green Version] 16. Fernandes, G.L.; Delbem, A.C.B. Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Associationagainst Oral Pathogens. Antibiotics 2018, 7, 52. [Google Scholar] [CrossRef][Green Version] 17. Fang, M.; Chen, J.H.; Xu, X.L.; Yang, P.H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 2006, 27, 513–517. [Google Scholar] [CrossRef] 18. Burguera-Pascu, M.; Rodríguez-Archilla, A.; Baca, P. Substantivity of zinc salts used as rinsing solutions and their effect on the inhibition of Streptococcus mutans. J. Trace Elem. Med. Biol. 2007, 21, 92–101. [Google Scholar] [CrossRef] 19. Sevinc, B.A.; Hanley, L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. 2011, 94, 22–31. [Google Scholar] 20. Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef] 21. Tokumoto, M.S.; Pulcinelli, S.H.; Santilli, C.V.; Briois, V. Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route. J. Phys. Chem. B 2003, 107, 568–574. [Google Scholar] [CrossRef] 22. Singhal, M.; Chhabra, V.; Kang, P.; Shah, D.O. Synthesis of ZnO nanoparticles for varistor application using Znsubstituted aerosol OT microemulsion. Mater. Res. Bull. 1997, 32, 239–247. [Google Scholar] [CrossRef] 23. Rataboul, F.; Nayral, C.; Casanove, M.J.; Maisonnat, A.; Chaudret, B. Synthesis and characterization of monodisperse zinc and zinc oxide nanoparticles from the organometallic precursor [Zn(C6H11)2]. J. Organomet. Chem. 2002, 643, 307–312. [Google Scholar] [CrossRef] 24. Okuyama, K.; Lenggoro, W.W. Preparation of nanoparticles via spray route. Chem. Eng. Sci. 2003, 58, 537–547. [Google Scholar] [CrossRef] 25. Moghaddam, A.B.; Nazari, T.; Badraghi, T.J.; Kazemzad, M. Synthesis of ZnO nanoparticles and electrodeposition of poly-pyrrole/ZnO nanocomposite film. Int. J. Electrochem. Sci. 2009, 4, 247–257. [Google Scholar] 26. Wei, Y.L.; Chang, P.C. Characteristics of nano zinc oxide synthesized under ultrasonic conditions. J. Phys. Chem. Solids 2008, 69, 688–692. [Google Scholar] [CrossRef] 27. Hu, X.L.; Zhu, Y.J.; Wang, S.W. Sono-chemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Mater. Chem. Phys. 2004, 88, 421–426. [Google Scholar] [CrossRef] 28. Wu, J.J.; Liu, S.C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 2002, 14, 215–218. [Google Scholar] [CrossRef] 29. Zhai, H.J.; Wu, W.H.; Lu, F.; Wang, H.S.; Wang, C. Effects of ammonia and cetyl-trimethyl-ammonium bromide (CTAB) on morphologies of ZnO nano- and micro-materials under solvothermal process. Mater. Chem. Phys. 2008, 112, 1024–1028. [Google Scholar] [CrossRef] 30. Bitenc, M.; Marinsek, M.; Crnjak, O.Z. Preparation and characterization of zinc hydroxide carbonate and porous zinc oxide particles. J. Eur. Ceram. Soc. 2008, 28, 2915–2921. [Google Scholar] [CrossRef] 31. Ajmal, H.M.S.; Khan, F.; Nam, K.; Kim, H.Y.; Kim, S.D. Ultraviolet Photodetection Based on High-Performance Co-Plus-Ni Doped ZnO Nanorods Grown by Hydrothermal Method on Transparent Plastic Substrate. Nanomaterials 2020, 10, 1225. [Google Scholar] [CrossRef] 32. Ajmal, H.M.S.; Khan, F.; Huda, N.U.; Lee, S.; Nam, K.; Kim, H.Y.; Eom, T.-H.; Kim, S.D. High-Performance Flexible Ultraviolet Photodetectors with Ni/Cu-Codoped ZnO Nanorods Grown on PET Substrates. Nanomaterials 2019, 9, 1067. [Google Scholar] [CrossRef] [PubMed][Green Version] 33. Westermark, K.; Rensmo, H.; Siegbahn, H.; Keis, K.; Hagfeldt, A.; Ojamäe, L.; Persson, P. PES studies of Ru (dcbpyH2) 2 (NCS) 2 adsorption on nanostructured ZnO for solar cell applications. J. Phys. Chem. B 2002, 106, 10102–10107. [Google Scholar] [CrossRef] 34. Luna, I.Z.; Hilary, L.N.; Chowdhury, A.M.S.; Gafur, M.A.; Khan, N.; Khan, R.A. Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method. Open Access Libr. J. 2015, 2, 1409. [Google Scholar] [CrossRef] 35. Jha, S.; Singh, R.; Pandey, A.; Bhardwaj, M.; Tripathi, S.K.; Mishra, R.K.; Dikshit, A. Bacterial toxicological assay of calcium oxide nanoparticles against some plant growth-promoting rhizobacteria. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 460–466. [Google Scholar] 36. Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticle using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, antibacterial activity, and antidiabetic activity. RSC Adv. 2015, 5, 4993–5003. [Google Scholar] [CrossRef] 37. Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, 8th ed.; CLSI: Wayne, PA, USA, 2009. [Google Scholar] 38. Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] 39. Novy, P.; Kloucek, P.; Rondevaldova, J.; Havlik, J.; LenkaKourimska, L.; Kokoska, L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia 2014, 94, 102–107. [Google Scholar] [CrossRef] 40. Singh, R.; Jha, S.; Pandey, A.; Dikshit, A.; Mishra, R.K. Comparison of Antibacterial Activities of essential oils of JuniperuscommunisL., Pinusroxburghii Sarg. and Taxodiumdistichum L. against Klebsiellapneumoniea. J. Emerg. Technol. Innov. Res. 2018, 5, 661–669. [Google Scholar] 41. Tripathi, S.K.; Singh, R.; Jha, S.; Pandey, A.; Dikshit, A. Comparison of antibacterial activities leaf extracts of Eclipta alba against Klebsiellapneumoniae. J. Emerg. Technol. Innov. Res. 2018, 5, 349–352. [Google Scholar] 42. Khoshhesab, Z.M.; Sarfaraz, M.; Asadabad, M.A. Preparation of ZnO nanostructures by chemical precipitation method. Synth. React. Inorg. Met. Nano-Metal Chem. 2011, 41, 814–819. [Google Scholar] [CrossRef] 43. Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnol. 2012, 2012, 372505. [Google Scholar] [CrossRef][Green Version] 44. Jayarambabu, N.; Kumari, S.; Rao, K.V.; Prabhu, Y.T. Germination and Growth Characteristics of Mungbean Seeds (Vignaradiata L.) affected by Synthesized Zinc Oxide Nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 3411. [Google Scholar] 45. Melo, M.A.S.; Guedes, S.F.F.; Xu, H.H.K.; Rodrigues, L.K.A. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013, 31, 459–467. [Google Scholar] [CrossRef][Green Version] 46. Shionoya, S.; Yen, W.M. (Eds.) Phosphor Handbook; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar] 47. Berger, L.I. Semiconductor Materials; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar] 48. Vanheusden, K.; Warren, W.L.; Seager, C.H.; Tallant, D.R.; Voigt, J.A.; Gnade, B.E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79, 7983–7990. [Google Scholar] [CrossRef] 49. Fan, X.M.; Lian, J.S.; Zhao, L.; Liu, Y.H. Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass. Appl. Surf. Sci. 2005, 252, 420–424. [Google Scholar] [CrossRef] 50. Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef] 51. Phan, T.N.; Buckner, T.; Sheng, J.; Baldeck, J.D.; Marquis, R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004, 19, 31–38. [Google Scholar] [CrossRef] 52. Giertsen, E. Effects of mouth rinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res. 2004, 38, 430–435. [Google Scholar] [CrossRef] 53. Turner, R.D.; Mesnage, S.; Hobbs, J.K.; Foster, S.J. Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology. Nat. Commun. 2018, 9, 1263. [Google Scholar] [CrossRef] 54. Villegas, N.A.; Compagnucci, M.J.S.; Aja, M.S.; Rocca, D.M.; Becerra, M.C.; Molina, G.F.; Palma, S.D. Novel antibacterial resin-based filling material containing nanoparticles for the potential one-step treatment of caries. J. Healthc. Eng. 2019, 2019, 6367919. [Google Scholar] [CrossRef][Green Version] 55. Niu, L.; Fang, M.; Jiao, K.; Tang, L.H.; Xiao, Y.H.; Shen, L.J.; Chen, J.H. Tetrapod-like zinc oxide whisker enhancement of resin composite. J. Dent. Res. 2010, 89, 746–750. [Google Scholar] [CrossRef] 56. Hojati, S.T.; Alaghemand, H.; Hamze, F.; Babaki, F.A.; Rajab-Nia, R.; Rezvani, M.B.; Kaviani, M.; Atai, M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent. Mater. 2013, 29, 495–505. [Google Scholar] [CrossRef] 57. Mahendra, R.; Ranjita, S. Metal Nanoparticles in Pharma, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] 58. Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanoparticle Res. 2006, 9, 479–489. [Google Scholar] [CrossRef] 59. Hamad, A.M.; Atiyea, Q.M. In vitro study of the effect of zinc oxide nanoparticles on Streptococcus mutans isolated from human dental caries. J. Phys. Conf. Ser. 2021, 1879, 022041. [Google Scholar] [CrossRef] 60. Qi, K.; Xing, X.; Zada, A.; Li, M.; Wang, Q.; Liu, S.; Lin, H.; Wang, G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram. Intern 2020, 46, 1494–1502. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship This research received no external funding.
utb.wos.affiliation [Tiwari, Ajay Kumar] Nehru Gram Bharati Deemed Be Univ, Dept Phys, Prayagraj 221505, India; [Jha, Saket; Dikshit, Anupam] Univ Allahabad, Dept Bot, Biol Prod Lab, Prayagraj 211002, India; [Singh, Abhimanyu Kumar] Univ Allahabad, Shyama Prasad Mukherjee Govt Degree Coll, Dept Phys, Prayagraj 211013, India; [Mishra, Sheo Kumar] Indira Gandhi Natl Tribal Univ, Dept Phys, Amarkantak 484886, India; [Pathak, Ashok Kumar] Univ Allahabad, Ewing Christian Coll, Dept Phys, Prayagraj 211003, India; [Ojha, Rudra Prakash] Nehru Gram Bharati Deemed Be Univ, Dept Zool, Prayagraj 221505, India; [Yadav, Raghvendra Singh] Tomas Bata Univ Zlin, Ctr Polymer Syst, Trida Tomase Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Department of Physics, Nehru Gram Bharati (Deemed to be University), Prayagraj, 221505, India; Biological Product Laboratory, Department of Botany, University of Allahabad, Prayagraj, 211002, India; Department of Physics, Shyama Prasad Mukherjee Government Degree College, University of Allahabad, Prayagraj, 211013, India; Department of Physics, Indira Gandhi National Tribal University, Amarkantak, 484886, India; Department of Physics, Ewing Christian College, University of Allahabad, Prayagraj, 211003, India; Department of Zoology, Nehru Gram Bharati (Deemed to be University), Prayagraj, 221505, India; Centre of Polymer Systems, Tomas Bata University in Zlin, Trida Tomase Bati 5678, Zlin, 76001, Czech Republic
utb.fulltext.projects -
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International