Publikace UTB
Repozitář publikační činnosti UTB

Incorporation of the new anti-octadecaborane laser dyes into thin polymer films: A temperature-dependent photoluminescence and infrared spectroscopy study

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Incorporation of the new anti-octadecaborane laser dyes into thin polymer films: A temperature-dependent photoluminescence and infrared spectroscopy study en
dc.contributor.author Čapková, Tereza
dc.contributor.author Hanulíková, Barbora
dc.contributor.author Ševčík, Jakub
dc.contributor.author Urbánek, Pavel
dc.contributor.author Antoš, Jan
dc.contributor.author Urbánek, Michal
dc.contributor.author Kuřitka, Ivo
dc.relation.ispartof International Journal of Molecular Sciences
dc.identifier.issn 1422-0067 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1661-6596 Scopus Sources, Sherpa/RoMEO, JCR
dc.date.issued 2022
utb.relation.volume 23
utb.relation.issue 15
dc.type article
dc.language.iso en
dc.publisher MDPI
dc.identifier.doi 10.3390/ijms23158832
dc.relation.uri https://www.mdpi.com/1422-0067/23/15/8832
dc.relation.uri https://www.mdpi.com/1422-0067/23/15/8832/pdf?version=1660026366
dc.subject infrared reflection-absorption spectroscopy en
dc.subject photoluminescence spectroscopy en
dc.subject borane cluster en
dc.subject thin film en
dc.subject transition temperature en
dc.description.abstract New anti-octadecaborane(22) laser dyes have been recently introduced. However, their application in solid thin films is limited, despite being very desirable for electronics. Spectroscopic methods, photoluminescence (PL), and infrared reflection-absorption spectroscopy (IRRAS), are here used to reveal structural responses to a temperature change in thin polymer films made of pi- and sigma-conjugated and non-conjugated polymers and anti-octadecaborane(22) and its tetra-alkylatedderivatives. It has been observed that borane clusters are not firmly fixed within polymer matrices and that their ability for diffusion out of the polymer film is unprecedented, especially at higher temperatures. This ability is related to thermodynamic transitions of polymer macromolecular chains. PL and IRRAS spectra have revealed a clear correlation with beta-transition and alpha-transition of polymers. The influence of structure and molecular weight of a polymer and the concentration and the substitution type of clusters on mobility of borane clusters within the polymer matrix is demonstrated. A solution is proposed that led to an improvement of the temperature stability of films by 45 degrees C. The well-known spectroscopic methods have proved to be powerful tools for a non-routine description of the temperature behavior of both borane clusters and polymer matrices. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1011108
utb.identifier.obdid 43884379
utb.identifier.scopus 2-s2.0-85137105520
utb.identifier.wok 000840242400001
utb.identifier.pubmed 35955965
utb.source J-wok
dc.date.accessioned 2022-08-31T06:47:09Z
dc.date.available 2022-08-31T06:47:09Z
dc.description.sponsorship Czech Science Foundation [19-23513S]; Operational Program Research and Development for Innovations; national budget of the Czech Republic [CZ.1.05/2.1.00/19.0409]; Ministry of Education, Youth and Sports of the Czech Republic-DKRVO [RP/CPS/2022/007]
dc.description.sponsorship RP/CPS/2022/007; Ministerstvo Školství, Mládeže a Tělovýchovy, MŠMT; Grantová Agentura České Republiky, GA ČR: 19-23513S; European Regional Development Fund, ERDF: CZ.1.05/2.1.00/19.0409
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.rights.access openAccess
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Čapková, Tereza
utb.contributor.internalauthor Hanulíková, Barbora
utb.contributor.internalauthor Ševčík, Jakub
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Antoš, Jan
utb.contributor.internalauthor Urbánek, Michal
utb.contributor.internalauthor Kuřitka, Ivo
utb.fulltext.affiliation Tereza Capkova https://orcid.org/0000-0002-0558-4776 , Barbora Hanulikova * https://orcid.org/0000-0002-8300-0588 , Jakub Sevcik, Pavel Urbanek https://orcid.org/0000-0002-9090-4681 , Jan Antos https://orcid.org/0000-0002-7769-8713 , Michal Urbanek https://orcid.org/0000-0003-3200-5036 and Ivo Kuritka https://orcid.org/0000-0002-1016-5170 Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, 760 01 Zlín, Czech Republic * Correspondence: hanulikova@utb.cz; Tel.: +420-576031743
utb.fulltext.dates Received: 28 June 2022 Revised: 3 August 2022 Accepted: 4 August 2022 Published: 8 August 2022
utb.fulltext.references 1. Sevcik, J.; Urbanek, P.; Skoda, D.; Jamatia, T.; Nadazdy, V.; Urbanek, M.; Antos, J.; Munster, L.; Kuritka, I. Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs. Mater. Des. 2021, 205, 109738. [Google Scholar] [CrossRef] 2. Lee, J.H.; Chen, C.H.; Lee, P.H.; Lin, H.Y.; Leung, M.K.; Chiu, T.L.; Lin, C.F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888. [Google Scholar] [CrossRef] 3. Zhu, M.R.; Yang, C.L. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 2013, 42, 4963–4976. [Google Scholar] [CrossRef] [PubMed] 4. Wang, Z.R.; Zou, Y.; Chen, W.Q.; Huang, Y.J.; Yao, C.J.; Zhang, Q.C. The Role of Weak Molecular Dopants in Enhancing the Performance of Solution-Processed Organic Field-Effect Transistors. Adv. Electron. Mater. 2019, 5, 1800547. [Google Scholar] [CrossRef] 5. Cerdan, L.; Braborec, J.; Garcia-Moreno, I.; Costela, A.; Londesborough, M. A borane laser. Nat. Commun. 2015, 6, 5958. [Google Scholar] [CrossRef] [PubMed][Green Version] 6. Sevcik, J.; Urbanek, P.; Hanulikova, B.; Capkova, T.; Urbanek, M.; Antos, J.; Londesborough, M.; Bould, J.; Ghasemi, B.; Petrkovsky, L.; et al. The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix. Materials 2021, 14, 589. [Google Scholar] [CrossRef] 7. Ma, M.; Guo, Y. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. Chin. J. Polym. Sci. 2020, 38, 565–578. [Google Scholar] [CrossRef] 8. Jin, K.L.; Torkelson, J.M. T-g-confinement effects in strongly miscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene: Roles of bulk fragility and chain segregation. Polymer 2017, 118, 85–96. [Google Scholar] [CrossRef] 9. Forrest, J.A.; DalnokiVeress, K.; Stevens, J.R.; Dutcher, J.R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 1996, 77, 4108. [Google Scholar] [CrossRef] 10. Kim, S.; Roth, C.B.; Torkelson, J.M. Effect of Nanoscale Confinement on the Glass Transition Temperature of Free-Standing Polymer Films: Novel, Self-Referencing Fluorescence Method. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2754–2764. [Google Scholar] [CrossRef] 11. Tsui, O.; Russell, T.P.; Hawker, C.J. Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 2001, 34, 5535–5539. [Google Scholar] [CrossRef] 12. Glor, E.C.; Angrand, G.V.; Fakhraai, Z. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films. J. Chem. Phys. 2017, 146, 203330. [Google Scholar] [CrossRef] [PubMed] 13. Mattsson, J.; Forrest, J.A.; Borjesson, L. Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys. Rev. E 2000, 62, 5187–5200. [Google Scholar] [CrossRef] [PubMed] 14. Priestley, R.D.; Broadbelt, L.J.; Torkelson, J.M.; Fukao, K. Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene. Phys. Rev. E 2007, 75, 061806. [Google Scholar] [CrossRef][Green Version] 15. Priestley, R.D.; Ellison, C.J.; Broadbelt, L.J.; Torkelson, J.M. Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 2005, 309, 456–459. [Google Scholar] [CrossRef] 16. Li, Q.F.; Hua, R.; Cheah, I.J.; Chou, K.C. Surface structure relaxation of poly(methyl methacrylate). J. Phys. Chem. B 2008, 112, 694–697. [Google Scholar] [CrossRef] [PubMed] 17. Serghei, A.; Mikhailova, Y.; Huth, H.; Schick, C.; Eichhorn, K.J.; Voit, B.; Kremer, F. Molecular dynamics of hyperbranched polyesters in the confinement of thin films. Eur. Phys. J. E 2005, 17, 199–202. [Google Scholar] [CrossRef] [PubMed] 18. Badia, J.D.; Teruel-Juanes, R.; Acebo, C.; Gil-Castell, O.; Serra, A.A. Ribes-Greus, Dielectric spectroscopy of novel thiol-ene/epoxy thermosets obtained from allyl-modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A. Eur. Polym. J. 2019, 113, 98–106. [Google Scholar] [CrossRef] 19. Burroughs, M.J.; Christie, D.; Gray, L.A.G.; Chowdhury, M.; Priestley, R.D. 21st Century Advances in Fluorescence Techniques to Characterize Glass-Forming Polymers at the Nanoscale. Macromol. Chem. Phys. 2018, 219, 1700368. [Google Scholar] [CrossRef] 20. Zhang, Y.; Zhang, J.M.; Lu, Y.L.; Duan, Y.X.; Yan, S.K.; Shen, D.Y. Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR. Macromolecules 2004, 37, 2532–2537. [Google Scholar] [CrossRef] 21. Hajduk, B.; Bednarski, H.; Trzebicka, B. Temperature-dependent spectroscopic ellipsometry of thin polymer films. J. Phys. Chem. B 2013, 54, 341–348. [Google Scholar] [CrossRef] [PubMed] 22. Singh, L.; Ludovice, P.J.; Henderson, C.L. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 2004, 449, 231–241. [Google Scholar] [CrossRef] 23. Haramina, T.; Kirchheim, R.; Tibrewala, A.; Peiner, E. Mechanical spectroscopy of thin polystyrene films. Polymer 2008, 49, 2115–2118. [Google Scholar] [CrossRef] 24. Londesborough, M.G.S.; Hnyk, D.; Bould, J.; Serrano-Andres, L.; Sauri, V.; Oliva, J.M.; Kubat, P.; Polivka, T.; Lang, K. Distinct Photophysics of the Isomers of B18H22 Explained. Inorg. Chem. 2012, 51, 1471–1479. [Google Scholar] [CrossRef][Green Version] 25. Bould, J.; Lang, K.M.; Kirakci, K.; Cerdan, L.; Roca-Sanjuan, D.; Frances-Monerris, A.; Clegg, W.; Waddell, P.G.; Fuciman, M.; Polivka, T.; et al. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020, 59, 17058–17070. [Google Scholar] [CrossRef] 26. Hanulikova, B.; Capkova, T.; Antos, J.; Urbanek, M.; Urbanek, P.; Sevcik, J.; Kuritka, I. Temperature dependence of vibrational motions of thin polystyrene films by infrared reflection-absorption spectroscopy: A single measurement tool for monitoring of glass transition and temperature history. Polym. Test. 2021, 101, 107305. [Google Scholar] [CrossRef] 27. Maliakal, A.J. Characterization of Dopant Diffusion within Semiconducting Polymer and Small-Molecule Films Using Infrared-Active Vibrational Modes and Attenuated Total Reflectance Infrared Spectroscopy. ACS Appl. Mater. Interfaces 2013, 5, 8300–8307. [Google Scholar] [CrossRef] [PubMed] 28. Reiser, P.; Muller, L.; Sivanesan, V.; Lovrincic, R.; Barlow, S.; Marder, S.R.; Pucci, A.; Jaegermann, W.; Mankel, E.; Beck, S. Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) Studied by Infrared and Photoelectron Spectroscopy. J. Phys. Chem. C 2018, 122, 14518–14527. [Google Scholar] [CrossRef] 29. Sauri, V.; Oliva, J.M.; Hnyk, D.; Bould, J.; Braborec, J.; Merchan, M.; Kubat, P.; Cisarova, I.; Lang, K.; Londesborough, M.G.S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)(2)-anti-B18H20. Inorg. Chem. 2013, 52, 9266–9274. [Google Scholar] [CrossRef] 30. Londesborough, M.G.S.; Dolansky, J.; Bould, J.; Braborec, J.; Kirakci, K.; Lang, K.; Cisarova, I.; Kubat, P.; Roca-Sanjuan, D.; Frances-Monerris, A.; et al. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg. Chem. 2019, 58, 10248–10259. [Google Scholar] [CrossRef] 31. Cossiello, R.F.; Kowalski, E.; Rodrigues, P.C.; Akcelrud, L.; Bloise, A.C.; deAzevedo, E.R.; Bonagamba, T.J.; Atvars, T. Photoluminescence and relaxation processes in MEH-PPV. Macromolecules 2005, 38, 925–932. [Google Scholar] [CrossRef] 32. Botiz, I.; Freyberg, P.; Leordean, C.; Gabudean, A.M.; Astilean, S.; Yang, A.; Stingelin, N. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Appl. Mater. Interfaces 2014, 6, 4974–4979. [Google Scholar] [CrossRef] 33. Moncada, J.; Terlier, T.; Ivanov, I.N.; Dadmun, M.D. Correlation of the Structure with Performance in MEH-PPV/dPS Thin Films Illuminated during Processing. ACS Appl. Polym. Mater. 2021, 3, 3821–3830. [Google Scholar] [CrossRef] 34. Varshni, Y.P. Temperature dependence of energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef] 35. Kuritka, I.; Sedlarik, V.; Harea, D.; Harea, E.; Urbanek, P.; Sloufova, I.; Coufal, R.; Zednik, J. Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers 2020, 12, 1226. [Google Scholar] [CrossRef] [PubMed] 36. Toy, L.G.; Nagai, K.; Freeman, B.D.; Pinnau, I.; He, Z.; Masuda, T.; Teraguchi, M.; Yampolskii, Y.P. Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules 2000, 33, 2516–2524. [Google Scholar] [CrossRef] 37. Kwak, G.; Fukao, S.; Fujiki, M.; Sakaguchi, T.; Masuda, T. Temperature-dependent, static, and dynamic fluorescence properties of disubstituted acetylene polymer films. Chem. Mater. 2006, 18, 2081–2085. [Google Scholar] [CrossRef] 38. Pipertzis, A.; Hossain, M.D.; Monteiro, M.J.; Floudas, G. Segmental Dynamics in Multicyclic Polystyrenes. Macromolecules 2018, 51, 1488–1497. [Google Scholar] [CrossRef] 39. van Krevelen, D.W. (Ed.) Chapter 4—Volumetric Properties. In Properties of Polymers, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 71–107. [Google Scholar] 40. Suzuki, H. Temperature dependence of the electroluminescent characteristics of light-emitting diodes made from poly(methylphenylsilane). Adv. Mater. 1996, 8, 657–659. [Google Scholar] [CrossRef] 41. Meenu, K.M.; Bag, D.S.; Lagarkha, R. Synthesis of Functional Photoactive Polysilane Copolymers with Disperse Yellow 7 Methacrylate and Study of their Optical, Photophysical and Thermal Properties. J. Polym. Mater. 2019, 36, 275–292. [Google Scholar] [CrossRef] 42. White, R.P.; Lipson, J.E.G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef] 43. Kazukauskas, V.; Cyras, V.; Pranaitis, M.; Apostoluk, A.; Rocha, L.; Sicot, L.; Raimond, P.; Sentein, C. Influence of polar molecular chain orientation on optical and carrier transport properties of polymer blends. Org. Electron. 2007, 8, 21–28. [Google Scholar] [CrossRef] 44. Giro, G.; di Marco, P.G.; Pizzoli, M.; Ceccorulli, G. Detection of polymer thermal transitions by excimer fluorescence, poly-n-vinylcarbazole. Chem. Phys. Lett. 1988, 150, 159–164. [Google Scholar] [CrossRef] 45. Deppe, D.D.; Dhinojwala, A.; Torkelson, J.M. Small molecule probe diffusion in thin polymer films near the glass transition: A novel approach using fluorescence nonradiative energy transfer. Macromolecules 1996, 29, 3898–3908. [Google Scholar] [CrossRef] 46. Dai, A.; Wan, A.; Magee, C.; Zhang, Y.; Barlow, S.; Marder, S.R.; Kahn, A. Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable spatially-confined doping for all-solution processed solar cells. Org. Electron. 2015, 23, 151–157. [Google Scholar] [CrossRef][Green Version] 47. Kawana, S.; Jones, R. Character of the glass transition in thin supported polymer films. Phys. Rev. E 2001, 63, 021501. [Google Scholar] [CrossRef] 48. Yang, Q.; Chen, X.; He, Z.; Lan, F.; Liu, H. The glass transition temperature measurements of polyethylene: Determined by using molecular dynamic method. RSC Adv. 2016, 6, 12053–12060. [Google Scholar] [CrossRef] 49. Tan, C.H.; Zhang, B.K.; Chen, J.; Zhang, L.N.; Huang, X.G.; Meng, H.Y. Study of Hydrolysis Kinetic of New Laser Material [anti-B18H22]. Russ. J. Inorg. Chem. 2019, 64, 1359–1364. [Google Scholar] [CrossRef] 50. Kim, J.H.; Jang, J.; Zin, W.C. Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 2001, 17, 2703–2710. [Google Scholar] [CrossRef]
utb.fulltext.sponsorship The work was supported by a grant from the Czech Science Foundation (Project No. 19-23513S). This work was also supported by Operational Program Research and Development for Innovations cofounded by the European Regional Development Fund (ERDF) and the national budget of the Czech Republic, within the framework of the project CPS-strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409). Authors T.C. and J.A. are especially thankful to the Ministry of Education, Youth and Sports of the Czech Republic–DKRVO (RP/CPS/2022/007).
utb.wos.affiliation [Capkova, Tereza; Hanulikova, Barbora; Sevcik, Jakub; Urbanek, Pavel; Antos, Jan; Urbanek, Michal; Kuritka, Ivo] Tomas Bata Univ Zlin, Ctr Polymer Syst, Tr Tomase Bati 5678, Zlin 76001, Czech Republic
utb.scopus.affiliation Centre of Polymer Systems, Tomas Bata University in Zlin, Tr. Tomase Bati 5678, Zlín, 760 01, Czech Republic
utb.fulltext.projects GAČR 19-23513S
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects RP/CPS/2022/007
utb.fulltext.faculty University Institute
utb.fulltext.ou Centre of Polymer Systems
utb.identifier.jel -
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam

Attribution 4.0 International Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Attribution 4.0 International