Publikace UTB
Repozitář publikační činnosti UTB

Influence of test specimen thickness on the fatigue crack growth of rubber

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Influence of test specimen thickness on the fatigue crack growth of rubber en
dc.contributor.author Stoček, Radek
dc.contributor.author Kipscholl, Rheinhold
dc.relation.ispartof Constitutive Models for Rubber X - Proceedings of the 10th European Conference on Constitutive Models for Rubber, ECCMR X 2017
dc.identifier.isbn 978-1-138-03001-5
dc.date.issued 2017
dc.citation.spage 347
dc.citation.epage 350
dc.event.title 10th European Conference on Constitutive Models for Rubber, ECCMR X 2017
dc.event.location Munich
utb.event.state-en Germany
utb.event.state-cs Německo
dc.event.sdate 2017-08-28
dc.event.edate 2017-08-31
dc.type conferenceObject
dc.language.iso en
dc.publisher CRC Press/Balkema
dc.identifier.doi 10.1201/9781315223278-61
dc.relation.uri https://www.taylorfrancis.com/books/e/9781351840408/chapters/10.1201%2F9781315223278-55
dc.description.abstract The present paper aims to perform a complex study of the influence of test specimen thickness on the Fatigue Crack Growth (FCG) of natural and synthetic rubber to enhance the circum-stantiality of the measuring methodology. In this work, the mini-Pure-Shear (mPS) test specimens (geometry ratio 1/10 “length/width”) at two different thickness of 0.5 and 1.5 mm were studied using the Tear and Fatigue Analyzer. Two different rubber compounds based on NR and SBR, filled with 50 phr of carbon black and common curatives were investigated. Three double notched test specimens of each material and thickness were simultaneously tested under the Gauss pulse loading condition at varied strains. As a result, the higher slopes, represented by the material parameters, m, were determined for the thinner samples independent on material type. Also, significantly lower deviations of FCG values for thinner samples, independent of material was observed. Thus, it was concluded that the lower thickness of the sample represents a more critical loading case, whereby the experimental data can be determined more precisely. © 2017 Taylor & Francis Group, London, UK. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008260
utb.identifier.rivid RIV/70883521:28610/17:63518257!RIV18-MSM-28610___
utb.identifier.obdid 43877961
utb.identifier.scopus 2-s2.0-85054836381
utb.identifier.wok 000582430100055
utb.source d-scopus
dc.date.accessioned 2018-11-01T09:32:11Z
dc.date.available 2018-11-01T09:32:11Z
dc.description.sponsorship Operational Program Research and Development for Innovations; European Regional Development FundEuropean Union (EU); national budget of the Czech Republic, within the framework of the project CPS-strengthening research capacity [CZ.1.05/2.1.00/19.0409]; Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Stoček, Radek
utb.fulltext.affiliation R. Stoček PRL Polymer Research Lab., s.r.o., Zlín, Czech Republic Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic R. Kipscholl Coesfeld GmbH & Co. KG, Dortmund, Germany
utb.fulltext.dates -
utb.fulltext.references Eisele, U., Kelbch, S.A., Engels, H.-W, 1992, The Tear Analyzer—A New Tool for Quantitative Measurements of the Dynamic Crack Growth of Elastomers, Kautschuk-Gummi—Kunststoffe, 45, pp. 1064–1069. Gent, A.N., Lindley, P.B., Thomas, A.G., 1964, Cut growth and fatigue of rubbers. I. The relationship between cut growth and fatigue. Journal of Applied Polymer Science, 455–466. Lake, G.J., Lindley, P.B., 1965, The mechanical fatigue limit for rubber. Journal of Applied Polymer Science 9, 1233–1251. Rivlin, R.S., Thomas, A.G., (1953), Rupture of rubber. I. Characteristic energy for tearing. Journal of Polymer Science 10, 291–318. Stadlbauer, F., Koch, T., Planitzer, F., Fidi, W., Archodoulaki, V.-M., 2013, Setup for evaluation of fatigue crack growth in rubber: Pure shear sample geometries tested in tension-compression mode. Polymer Testing, 2013, 32, 1045–1051. Stadlbauer, F., Koch, T., Planitzer, F., Fidi, W., Archodoulaki, V.-M., 2013, Einfluss des Rußfüllgrades von Elastomeren auf Aspekte der Ermüdung in Zug-Druck-Belastung. Kautschuk-Gummi-Kunststoffe, 66, 37–42. Stadlbauer, F., Koch, T., Archodoulaki, V.-M., Planitzer, F., Holzner, A., 2013, Influence of Experimental Parameters on Fatigue Crack Growth and Heat Build-Up in Rubber, Materials, 6, 5502–5516. Stocek, R., Reincke, K., Gehde, M., Grellmann, W., Heinrich, G., 2010, Einfluss der Kerbeinbringung auf die Rissausbreitung in elastomeren Werkstoffen, Kautschuk-Gummi-Kunststoffe, 63, pp. 364–370. Stoček, R., Heinrich, G., Gehde, M, Kipscholl, R., (2012), A New Testing Concept for Determination of Dynamic Crack Propagation in Rubber Materials, Kautschuk-Gummi-Kunststoffe, 65 (2012), 49–53. Stoček, R., Heinrich, G., Gehde, M., Kipscholl, R., 2013, Analysis of Dynamic Crack Propagation in Elastomers by Simultaneous Tensile—and Pure-Shear-Mode Testing. In: Grellmann, W., Heinrich, G., Kaliske, M., Klüppel, M., Schneider, K., Vilgis, T. (Eds.): Fracture mechanics and statistical mechanics of reinforced elastomeric blends. Springer-Verlag Berlin Heidelberg, 269–300. Stoček, R., Horst, T., Reincke, K., 2017, Tearing energy as fracture mechanical quantity for elastomers, In: K.W. Stöckelhuber, A. Das, M. Klüppel: Designing of Elastomer Nanocomposites: From Theory to Applications. Advances in Polymer Science, Springer New York LLC, Vol. 275, 2017, pp. 361–398. Yeoh., O.H., 2001, Analysis of deformation and fracture of ‘pure shear’ rubber testpiece, Plastics, Rubber and Composites 30, 391–397.
utb.fulltext.sponsorship This article was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund and national budget of the Czech Republic, within the framework of the project CPS—strengthening research capacity (reg. number: CZ.1.05/2.1.00/19.0409) as well supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504).
utb.wos.affiliation [Stocek, R.] PRL Polymer Res Lab Sro, Zlin, Czech Republic; [Stocek, R.] Tomas Bata Univ Zlin, Univ Inst, Ctr Polymer Syst, Zlin, Czech Republic; [Kipscholl, R.] Coesfeld GmbH & Co KG, Dortmund, Germany
utb.scopus.affiliation PRL Polymer Research Lab., s.r.o, Zlín, Czech Republic; Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Zlín, Czech Republic; Coesfeld GmbH & Co. KG, Dortmund, Germany
utb.fulltext.projects CZ.1.05/2.1.00/19.0409
utb.fulltext.projects LO1504
Find Full text

Soubory tohoto záznamu

Zobrazit minimální záznam