TBU Publications
Repository of TBU Publications

Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles

DSpace Repository

Show simple item record


dc.title Influence of Gd3+-substitution on structural, magnetic, dielectric and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles en
dc.contributor.author Yadav, Raghvendra Singh
dc.contributor.author Kuřitka, Ivo
dc.contributor.author Vilčáková, Jarmila
dc.contributor.author Havlica, Jaromír
dc.contributor.author Kalina, Lukáš
dc.contributor.author Urbánek, Pavel
dc.contributor.author Machovský, Michal
dc.contributor.author Škoda, David
dc.contributor.author Masař, Milan
dc.relation.ispartof Journal of Materials Science: Materials in Electronics
dc.identifier.issn 0957-4522 OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.date.issued 2018
utb.relation.volume 29
utb.relation.issue 18
dc.citation.spage 15878
dc.citation.epage 15893
dc.event.title 26th International Materials Research Congress (IMRC)
dc.event.location Cancun
utb.event.state-en Mexico
utb.event.state-cs Mexiko
dc.event.sdate 2017-08-20
dc.event.edate 2017-08-25
dc.type article
dc.language.iso en
dc.publisher Springer New York LLC
dc.identifier.doi 10.1007/s10854-018-9674-z
dc.relation.uri https://link.springer.com/article/10.1007%2Fs10854-018-9674-z
dc.description.abstract The gadolinium (Gd3+) substituted zinc ferrite nanoparticles (ZnFe2−xGdxO4) for Gd3+ (x = 0.00, 0.05, 0.10, 0.20) have been synthesized by honey mediated sol–gel auto-combustion method. The X-ray diffraction study revealed the formation of spinel ferrite crystal structure. The Raman spectroscopy and Fourier transform infrared spectroscopy study well support the XRD results analysis. The field emission scanning electron microscopy micrograph revealed spherical morphology and grain size around 10–30 nm for ZnFe2−xGdxO4 (x = 0.10) nanoparticles. The presence of Zn2+ and Fe3+ oxidation state in synthesized nanoparticles was confirmed by X-ray photoelectron spectroscopy. Magnetic properties of the Gd3+ substituted zinc ferrite nanoparticles were investigated by vibrating sample magnetometer at room temperature. The conversion of magnetic hysteresis curves from ferromagnetic to a paramagnetic with the substitution of Gd3+ in zinc ferrite nanoparticles was observed. Frequency dependent dielectric constant and ac conductivity measurements revealed that Gd3+ substitution improved the value of dielectric constant and ac conductivity of the Gd3+ substituted zinc ferrite nanoparticles. Further, the existence of two semicircles in Cole–Cole plot demonstrated the role of both grains and grain boundaries to conduction process in synthesized Gd3+ ion substituted zinc ferrite nanoparticles. Furthermore, the grain relaxation time (τg), grain boundary relaxation time (τgb), grain resistance (Rg), grain capacitance (Cg), grain boundary resistance (Rgb) and grain boundary capacitance (Cgb) for synthesized ZnFe2−xGdxO4 (x = 0.00, 0.05, 0.10, 0.20) nanoparticles have been calculated using modulus spectroscopy analysis. © 2018, Springer Science+Business Media, LLC, part of Springer Nature. en
utb.faculty University Institute
dc.identifier.uri http://hdl.handle.net/10563/1008195
utb.identifier.obdid 43879130
utb.identifier.scopus 2-s2.0-85050184608
utb.identifier.wok 000444200300073
utb.source j-scopus
dc.date.accessioned 2018-10-03T11:13:01Z
dc.date.available 2018-10-03T11:13:01Z
dc.description.sponsorship IGA/CPS/2017/7, NPU, Northwestern Polytechnical University; LO1504, NPU, Northwestern Polytechnical University; MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy
dc.description.sponsorship Ministry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]; TBU in Zlin [IGA/CPS/2017/7]
utb.ou Centre of Polymer Systems
utb.contributor.internalauthor Yadav, Raghvendra Singh
utb.contributor.internalauthor Kuřitka, Ivo
utb.contributor.internalauthor Vilčáková, Jarmila
utb.contributor.internalauthor Urbánek, Pavel
utb.contributor.internalauthor Machovský, Michal
utb.contributor.internalauthor Škoda, David
utb.contributor.internalauthor Masař, Milan
utb.fulltext.affiliation Raghvendra Singh Yadav1 · Ivo Kuřitka1 · Jarmila Vilcakova1 · Jaromir Havlica2 · Lukas Kalina2 · Pavel Urbánek1 · Michal Machovsky1 · David Skoda1 · Milan Masař1 ✉ Raghvendra Singh Yadav yadav@utb.cz; raghvendra.nac@gmail.com 1 Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 76001 Zlín, Czech Republic 2 Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic
utb.fulltext.dates Received: 24 April 2018 / Accepted: 13 July 2018 / Published online: 21 July 2018
utb.fulltext.references 1. S.M. Ansari, R.D. Bhor, K.R. Pai, S. Mazumder, D. Sen, Y.D. Kolekar, C.V. Ramana, Size and chemistry controlled cobalt–ferrite nanoparticles and their anti-proliferative effect against the MCF–7 breast cancer cells. ACS Biomater. Sci. Eng. 2, 2139–2152 (2016) 2. P.P. Goswami, H.A. Choudhury, S. Chakma, V.S. Moholkar, Sonochemical synthesis and characterization of manganese ferrite nanoparticles. Ind. Eng. Chem. Res. 52, 17848–17855 (2013) 3. X. Zeng, J. Zhang, S. Zhu, X. Deng, H. Ma, J. Zhang, Q. Zhang, P. Li, D. Xue, N.J. Mellors, X. Zhang, Y. Peng, Direct observation of cation distributions of ideal inverse spinel CoFe2O4 nanofibres and correlated magnetic properties. Nanoscale 8, 7493–7500 (2017) 4. S.G. Kakade, R.C. Kambale, C.V. Ramanna, Y.D. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). RSC Adv. 6, 33308–33317 (2016) 5. G. Xi, L. Wang, T. Zhao, Magnetic and magnetostrictive properties of RE-doped Cu–Co ferrite fabricated from spent lithium-ion batteries. J. Magn. Magn. Mater. 424, 130–136 (2017) 6. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Rare earth metals’ influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42, 11958–11965 (2016) 7. L. Chauhan, N. Singh, A. Dhar, H. Kumar, S. Kumar, K. Sreenivas, Structural and electrical properties of Dy3+ substituted NiFe2O4 ceramics prepared from powders derived by combustion method. Ceram. Int. 43, 8378–8390 (2017) 8. M. Bini, C. Tondo, D. Capsoni, M.C. Mozzati, B. Albini, P. Galinetto, Superparamagnetic ZnFe2O4 nanoparticles: the effect of Ca and Gd doping. Mater. Chem. Phys. 204, 72–82 (2018) 9. P. Raja, T. Yadavalli, D. Ravi, H.A. Therese, C. Ramasamy, Y. Hayakawa, Synthesis and magnetic properties of gadolinium substituted zinc ferrites. Mater. Lett. 188, 406–408 (2017) 10. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–138 (2011) 11. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE = Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013) 12. P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd –Mn–Cr ferrites prepared using the sol–gel autocombustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015) 13. Z.Z. Lazarevic, C. Jovalekic, A. Milutinovic, D. Sekulic, V.N. Ivanovski, A. Recnik, B. Cekic, N.Z. Romcevic, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis. J. Appl. Phys. 113, 187221 (2013) 14. J. Borcherding, J. Baltrusaitis, H. Chen, L. Stebounova, C.-M. Wu, G. Rubasinghege, I.A. Mudunkotuwa, J.C. Caraballo, J. Zabner, V.H. Grassian, A.P. Comellas, Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environ. Sci. Nano 1(2), 123–132 (2015). https://doi.org/10.1039/C3EN00029J 15. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, New York, 1956), p. 139 16. A. Kumar, P.S. Rana, M.S. Yadav, R.P. Pant, Effect of Gd3+ ion distribution on structural and magnetic properties in nano-sized Mn–Zn ferrite particles. Ceram. Int. 41, 1297–1302 (2015) 17. P. Vanysek, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2001) 18. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252–263 (2017) 19. C. Pereira, A.M. Pereira, C. Fernandes, M. Rocha, R. Mendes, M.P. Fernandez-García, A. Guedes, P.B. Tavares, J.-M. Greneche, J.P. Araujo, C. Freire, Superparamagnetic MFe2O4 (M = Fe, Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem. Mater. 24, 1496–1504 (2012) 20. C. Singh, A. Goyal, S. Singhal, Nickel-doped cobalt ferrite nanoparticles: efficient catalysts for the reduction of nitroaromatic compounds and photo-oxidative degradation of toxic dyes. Nanoscale 6, 7959–7970 (2014) 21. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338 (2015) 22. S. Kumari, V. Kumar, P. Kumar, M. Kar, L. Kumar, Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique. Adv. Powder Technol. 26, 213–223 (2015) 23. B. Parvatheeswara Rao, B. Dhanalakshmi, S. Ramesh, P.S.V. Subba Rao, Cation distribution of Ni–Zn–Mn ferrite nanoparticles. J. Magn. Magn. Mater. 456, 444–450 (2018) 24. P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Influence of rare earth (Nd3+) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. 191, 215–224 (2017) 25. Z. Yan, J. Luo, Effects of Ce–Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloys Compd. 695, 1185–1195 (2017) 26. V.J. Angadi, L. Choudhury, K. Sadhana, H.-L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, K. Praveena, Structural, electrical and magnetic properties of Sc3+ doped Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 424, 1–11 (2017) 27. A. Thakur, P. Kumar, P. Thakur, K. Rana, A. Chevalier, J.-L. Mattei, P. Queffélec, Enhancement of magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by the co-precipitation method. Ceram. Int. 42, 10664–10670 (2016) 28. S.T. Assar, H.F. Abosheiasha, Effect of Ca substitution on some physical properties of nano-structured and bulk Ni-ferrite samples, J. Magn. Magn. Mater. 374, 264–272 (2015) 29. S. Bhukal, M. Dhiman, S. Bansal, M.K. Tripathi, S. Singhal, Substituted Co–Cu–Zn nanoferrites: synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv. 6, 1360–1375 (2016) 30. K.R. Babu, K.R. Rao, B.R. Babu, Cu2+-modified physical properties of cobalt-nickel ferrite. J. Magn. Magn. Mater. 434, 118–125 (2017) 31. S. Torkian, A. Ghasemi, R.S. Razavi, Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1–xFe2O4 ferrites. Ceram. Int. 43, 6987–6995 (2017) 32. M.A. Amer, T. Meaz, A. Hashhash, S. Attalah, F. Fakhry, Structural phase transformations of as-synthesized Cu-nanoferrites by annealing process. J. Alloys Compd. 649, 712–720 (2015) 33. H.M. Zaki, H.A. Dawoud, Far-infrared spectra for copper–zinc mixed ferrites. Physica B 405, 4476–4479 (2010) 34. P. Choudhary, D. Varshney, Elucidation of structural, vibrational and dielectric properties of transition metal (Co2+) doped spinel Mg–Zn chromites. J. Magn. Magn. Mater. 454, 274–288 (2018) 35. J. Singh, A. Roychoudhury, M. Srivastava, V. Chaudhary, R. Prasanna, D.W. Lee, S.H. Lee, B.D. Malhotra, Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite-chitosan nanocomposite plateform for biomedical application. J. Phys. Chem. 117, 8491–8502 (2013) 36. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1-xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J. Mol. Struct. 1006, 447–452 (2011) 37. Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778–92787 (2015) 38. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater. Sci. Eng., B 206, 69–78 (2016) 39. R.N. Bhowmik, A.K. Sinha, Improvement of room temperature electric polarization and ferrimagnetic properties of Co1.25Fe1.75O4 ferrite by heat treatment. J. Magn. Magn. Mater. 421, 120–131 (2017) 40. L. Wang, X. Lu, C. Han, R. Lu, S. Yang, X. Song, Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. CrystEngComm. 16, 10618–10623 (2014) 41. R.A. Pawar, S.M. Patange, Q.Y. Tamboli, V. Ramanathan, S.E. Shirsath, Spectroscopic, elastic and dielectric properties of Ho3+ substituted Co–Zn ferrites synthesized by sol–gel method. Ceram. Int. 42, 16096–16102 (2016) 42. J. Zhang, J.-M. Song, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gassensing property for acetone. Sens. Actuators B 221, 55–62 (2015) 43. X. Guo, H. Zhu, M. Si, C. Jiang, D. Xue, Z. Zhang, Q. Li, ZnFe2O4 nanotubes: microstructure and magnetic properties. J. Phys. Chem. C 118, 30145–30152 (2014) 44. G.H. Jaffari, A.K. Rumaiz, J.C. .Woicik, S.I. Shah, Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J. Appl. Phys. 111, 093906 (2012) 45. A. Hao, M. Ismail, S. He, N. Qin, R. Chen, A.M. Rana, D. Bao, Enhanced resistive switching and magnetic properties of Gddoped NiFe2O4 thin films prepared by chemical solution deposition method. Mater. Sci. Eng. B 229, 86–95 (2018) 46. M.A. Dar, D. Varshney, Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites. J. Magn. Magn. Mater. 436, 101–112 (2017) 47. Z.Ž. Lazarević, Č Jovalekić, V.N. Ivanovski, A. Rečnik, A. Milutinović, B. Cekić, N. Romčević, Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route. J. Phys. Chem. Solids 75, 869–877 (2014) 48. S. Ayyappan, S. Philip Raja, C. Venkateswaran, J. Philip, B. Raj, Room temperature ferromagnetism in vacuum annealed ZnFe2O4 nanoparticles. Appl. Phys. Lett. 96, 143106 (2010) 49. R. Islam, M.A. Hakim, M.O. Rahman, H. Narayan Das, M.A. Mamun, Study of the structural, magnetic and electrical properties of Gd-substituted Mn–Zn mixed ferrites. J. Alloys Compd. 559, 174–180 (2013) 50. J. Parashar, V.K. Saxena, D. Jyoti, K.B. Bhatnagar, Sharma, Dielectric behaviour of Zn substituted Cu nano-ferrites. J. Magn. Magn. Mater. 394, 105–110 (2015) 51. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, Correlation between structural, magnetic, and dielectric properties of manganese substituted cobalt ferrite. J. Appl. Phys. 114, 183907 (2013) 52. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Tb3+ doped Ni0.4Zn0.6Fe2O4 nanoparticles. J. Alloys Compd. 541, 29–35 (2012) 53. M. Ahmad, M. Azhar Khan, A. Mahmood, S.-S. Liu, A.H. Chughtai, W.-C. Cheong, B. Akram, G. Nasar, Role of ytterbium on structural and magnetic properties of NiCr0.1Fe1.9O4 co-precipitated ferrites. Ceram. Int. 44, 5433–5439 (2018) 54. A.A. Kadam, S.S. Shinde, S.P. Yadav, P.S. Patil, K.Y. Rajpure, Structural, morphological, electrical and magnetic properties of Dy doped Ni–Co substitutional spinel ferrite. J. Magn. Magn. Mater. 329, 59–64 (2013) 55. D. Varshney, K. Verma, Substitutional effect on structural and dielectric properties of Ni1–xAxFe2O4 (A = Mg, Zn) mixed spinel ferrites. Mater. Chem. Phys. 140, 412–418 (2013) 56. A. Manzoor, M.A. Khan, M.Y. Khan, M.N. Akhtar, A. Hussain, Tuning magnetic and high frequency dielectric behavior in Li–Zn ferrites by Ho doping. Ceram. Int. 44, 6321–6329 (2018) 57. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, Structural, optical, dielectric and magnetic studies of gadolinium-added Mn–Cu nanoferrites. J. Magn. Magn. Mater. 453, 78–90 (2018) 58. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Dielectric properties of mixed Li–Ni–Cd ferrites, Smart Mater. Struct. 15, N36–N39 (2006). https://doi.org/10.1088/0964-1726/15/2/N02 59. S.A. Saafan, S.T. Assar, Dielectric behavior of nano-structured and bulk LiNiZn ferrite samples, J. Magn. Magn. Mater. 324, 2989–3001 (2012) 60. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106 (2014) 61. S.G. Kakade, Y.-R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9–xErxO4). J. Phys. Chem. C 120, 5682–5693 (2016) 62. A. Manzoor, M.A. Khan, M. Shahid, M.F. Warsi, Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J. Alloy Compd. 710, 547–556 (2017) 63. M.N. Akhtar, M.A. Khan, M.R. Raza, M. Ahmad, G. Murtaza, R. Raza, S.F. Shaukat, M.H. Asif, M. Saleem, M.S. Nazir, Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40, 15821–15829 (2014) 64. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Hosubstituted nickel ferrites. J. Phys. Chem. C 115, 554–560 (2011) 65. Z. Liu, Z. Peng, C. Lv, X. Fu, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017) 66. M.T. Rahman, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite, J. Alloy Compd. 617, 547–562 (2014) 67. M.D. Rahaman, T. Nusrat, R. Maleque, A.K.M. Akther Hossain, Investigation of structural, morphological and electromagnetic properties of Mg0.25Mn0.25Zn0.5–xSrxFe2O4 ferrites, J. Magn. Magn. Mater. 451, 391–406 (2018) 68. S.F. Mansour, M.A. Abdo, Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites, J. Magn. Magn. Mater. 428, 300–305 (2017) 69. A.K. Pradhan, T.K. Nath, S. Saha, Impedance spectroscopy and electric modulus behaviour of molybdenum doped cobalt–zinc ferrite. Mater. Res. Express 4, 076107 (2017) 70. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 108, 034101 (2010) 71. A. Manzoora, M.A. Khan, M.Y. Khan, M.N. Akhtar, A. Hussain, Tuning magnetic and high frequency dielectric behavior in Li–Zn ferrites by Ho doping. Ceram. Int. 44, 6321–6329 (2018) 72. M.A. Ali, M.M. Uddin, M.N.I. Khan, F.-U.-Z. Chowdhury, S.M. Haque, Structural, morphological and electrical properties of Sn-substituted Ni–Zn ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 424, 148–154 (2017) 73. E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J. Alloy Compd. 726, 187–194 (2017) 74. K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, TiO2 nanoparticles and silicon nanowires hybrid device: role of interface on electrical, dielectric, and photodetection properties. Appl. Phys. Lett. 101, 253104 (2012) 75. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989) 76. N. Kumari, V. Kumar, S.K. Singh, Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Adv. 5, 37925 (2015)
utb.fulltext.sponsorship This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Program NPU I (LO1504). One author ‘Milan Masar’ also acknowledges an internal Grant IGA/CPS/2017/7 from TBU in Zlin.
utb.scopus.affiliation Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, Zlín, 76001, Czech Republic; Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno, 61200, Czech Republic
utb.fulltext.projects NPU I (LO1504)
utb.fulltext.projects IGA/CPS/2017/7
Find Full text

Files in this item

Show simple item record