TBU Publications
Repository of TBU Publications

PLA based bionanocomposites and their transport properties

DSpace Repository

Show simple item record


dc.title PLA based bionanocomposites and their transport properties en
dc.contributor.author Kalendová, Alena
dc.contributor.author Šmotek, Jiří
dc.contributor.author Stloukal, Petr
dc.contributor.author Kráčalík, Milan
dc.contributor.author Šlouf, Miroslav
dc.contributor.author Laske, Stephan
dc.relation.ispartof AIP Conference Proceedings
dc.identifier.issn 0094-243X OCLC, Ulrich, Sherpa/RoMEO, JCR
dc.identifier.isbn 9780735416970
dc.date.issued 2018
utb.relation.volume 1981
dc.event.title 9th International Conference on Times of Polymers and Composites: From Aerospace to Nanotechnology
dc.event.location Ischia
utb.event.state-en Italy
utb.event.state-cs Itálie
dc.event.sdate 2018-06-17
dc.event.edate 2018-06-21
dc.type conferenceObject
dc.language.iso en
dc.publisher American Institute of Physics Inc.
dc.identifier.doi 10.1063/1.5045933
dc.relation.uri https://aip.scitation.org/doi/abs/10.1063/1.5045933
dc.subject PLA en
dc.subject Nanocomposite en
dc.subject Clay en
dc.subject WVT Permeability en
dc.description.abstract This paper deals with the evaluation of gas transport properties of bionanocomposites based on polylactic acid 2003D (PLA). Montmorillonite based fillers, Cloisite® 10A, 20A, 30B and natural Cloisite® Na+, were incorporated into PLA polymer films. PLA/clay mixtures were produced by twin screw extruder ZSK-25. Further testing sheets were prepared from PLA/clay mixtures by Brabender Plasti-Corder equipped by flat die. The prepared composites were evaluated for water absorption, permeability of gases and water vapors. Further material morphology was assessed using X-ray diffraction as well as transmission electron microscopy. The best results achieved compositions with PLA/Cloisite10A and Cloisite 30B. © 2018 Author(s). en
utb.faculty Faculty of Technology
dc.identifier.uri http://hdl.handle.net/10563/1008109
utb.identifier.obdid 43878968
utb.identifier.scopus 2-s2.0-85049938923
utb.identifier.wok 000461043600071
utb.source d-scopus
dc.date.accessioned 2018-08-03T12:49:41Z
dc.date.available 2018-08-03T12:49:41Z
dc.description.sponsorship TBU in Zlin RVOE; [63p24]; [66p21]
utb.contributor.internalauthor Kalendová, Alena
utb.contributor.internalauthor Šmotek, Jiří
utb.contributor.internalauthor Stloukal, Petr
utb.contributor.internalauthor Kráčalík, Milan
utb.fulltext.affiliation Alena Kalendova a , Jiri Smotek a , Petr Stloukal b , Milan Kracalik c , Miroslav Slouf d , Stephan Laske e a Polymer Engineering Department, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlin, Czech Republic, email:kalendova@email.cz b Environmental Protection Engineering Department, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 76001 Zlin, Czech Republic c Institute of Polymer Science, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria d Institute of Macromolecular Chemistry AS CR, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic e Polymer Engineering and Science Department, Polymer Processing, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700 Leoben, Austria
utb.fulltext.dates -
utb.fulltext.references 1. Choudalakis G., Gotsis A. Permeability of polymer/clay nanocomposites: a review. Eur. Polym. J. 45(4), 967-984 (2009). 2. Ray S., Quek S. Y., Easteal A., Chen X.D. The potential use of polymer-clay nanocomposites in food packaging. Int. J. Food Eng. 2(4) (2006). 3. Lange J., Wyser Y. Recent innovations in barrier technologies for plastic packaging - a review. Packag. Technol. Sci. 16(4), 149-158 (2003). 4. Yoo B. M., Shin H. J., Yoon H. W., Park H. B. Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131(1) (2014). 5. Sivan Peretz Damari, Lucas Cullari, Roey Nadiv, Yiftach Nir, Dalia Laredo, Jaime Grunlan, Oren Regev. Graphene-induced enhancement of water vapor barrier in polymer nanocomposites. Composites Part B 134, 218-224 (2018). 6. Ward W., Gaines G., Alger M., Stanley T. Gas barrier improvement using vermiculite and mica in polymer films. J. Membr. Sci. 55(1), 173-180 (1991). 7. Gill T., Xanthos M. Effects of fillers on permeability and mechanical properties of HDPE blown films. J. Vinyl. Add. Tech. 2(3), 248-252 (1996). 8. Sekelik D., Stepanov E., Nazarenko S., Schiraldi D., Hiltner A., Baer E. Oxygen barrier properties of crystallized and talc-filled poly (ethylene terephthalate). J. Polym. Sci. Part B Polym. Phys. 37(8), 847-857 (1999). 9. Gupta R. K., Kennel E., Kim K.-J. Polymer nanocomposites handbook. London: CRC press, 2009. 10. Kalendova, A., Merinska, D., Gerard J. F., Slouf M. Polymer/clay nanocomposites and their gas barrier properties, Polymer Composites 34 (9), 1418-1424 (2013). 11. Tesarikova A., Merinska D., Kalous J., Svoboda P. Ethylene-Octene Copolymers/Organoclay Nanocomposites: Preparation and Properties. Journal of Nanomaterials 2016 (2016). 12. Bao C., Guo Y., Yuan B., Hu Y., Song L. Functionalized graphene oxide for firesafety applications of polymers: a combination of condensed phase flame retardant strategies. J. Mater. Chem. 22(43), 23057-63 (2012) 13. Nadiv R., Vasilyev G., Shtein M. Peled A., Zussman E., Regev O. The multiple roles of a dispersant in nanocomposite systems. Compos. Sci. Technol. 133,192-199 (2016). 14. Krasnov A.P., Aderikha V. N., Afonicheva O. V., Mit’ V. A., Tikhonov N. N., Vasil’kov A. Yu., Said-Galiev E. E., Naumkin A. V., Nikolaev A. Yu. Categorization System of Nanofillers to Polymer Composites. Journal of friction and wear 31(1), 68- 80 (2010). 15. De Azeredo H. M. C. Nanocomposites for food packaging applications. Food Research International 42(9), 1240-1253 (2009). 16. Laske S. Polymer Nanoclay Composites. Amsterdam: Elsevier, 2015. 17. Therias S., Murariu M., Dubois P. Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability 145, 60-69 (2017). 18. Haghi A. K., Zaikov G. E. Update on nanofiller in nanocomposites: from introduction to application. Shawbury: Smithers Rapra, 2013. 19. Standard test E 96-95, “Standard test method for water vapor transmission of materials”. 20. Lu C., Mai Y.-W. Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys. Rev. Lett.95(8),088303 (2005).
utb.fulltext.sponsorship This project was supported by internal grant of TBU in Zlin RVOE and Project Action 63p24 and 66p21. Next authors wish to thanks Hannelore Mattausch and the whole team of Polymer processing on Montanuniversitaet Leoben for the help with the PLA/clay mixtures compounding.
utb.wos.affiliation [Kalendova, Alena; Smotek, Jiri] Tomas Bata Univ Zlin, Fac Technol, Polymer Engn Dept, Vavreckova 275, Zlin 76001, Czech Republic; [Stloukal, Petr] Tomas Bata Univ Zlin, Fac Technol, Environm Protect Engn Dept, Vavreckova 275, Zlin 76001, Czech Republic; [Kracalik, Milan] Johannes Kepler Univ Linz, Inst Polymer Sci, Altenberger Str 69, A-4040 Linz, Austria; [Slouf, Miroslav] Inst Macromol Chem AS CR, Heyrovskeho Nam 2, Prague 16206 6, Czech Republic; [Laske, Stephan] Univ Leoben, Polymer Engn & Sci Dept, Polymer Proc, Otto Glockel Str 2, A-8700 Leoben, Austria
utb.scopus.affiliation Polymer Engineering Department, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic; Environmental Protection Engineering Department, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, Zlin, Czech Republic; Institute of Polymer Science, Johannes Kepler University Linz, Altenberger Str. 69, Linz, Austria; Institute of Macromolecular Chemistry AS CR, Heyrovskeho nam. 2, Prague 6, Czech Republic; Polymer Engineering and Science Department, Polymer Processing, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, Leoben, Austria
utb.fulltext.projects 63p24
utb.fulltext.projects 66p21
Find Full text

Files in this item

Show simple item record